Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 14 задач
Версия для печати
Убрать все задачи

Дан угол в 30o. Постройте окружность радиуса 2,5, касающуюся одной стороны этого угла и имеющую центр на другой его стороне. Найдите расстояние от центра окружности до вершины угла.

Вниз   Решение


В прямоугольном листе бумаги сделали несколько непересекающихся круглых дыр. На дырявом листке отметили две точки, находящиеся на расстоянии d друг от друга. Докажите, что на дырявом листке можно нарисовать кривую длины меньше 1,6d, соединяющую данные точки.

ВверхВниз   Решение


Сторона основания ABCD правильной призмы ABCDA1B1C1D1 равна 2a , боковое ребро – a . Рассматриваются отрезки с концами на диагонали AD1 грани AA1D1D и диагонали DB1 призмы, параллельные плоскости AA1B1B . а) Один из таких отрезков проведён через точку M диагонали AD1 , для которой AM:AD1 = 2:3 . Найдите его длину. б) Найдите наименьшую длину всех рассматриваемых отрезков.

ВверхВниз   Решение


Дан произвольный треугольник ABC и точка X вне его. AM, BN, CQ — медианы треугольника ABC. Доказать, что площадь одного из треугольников XAM, XBN, XCQ равна сумме площадей двух других.

ВверхВниз   Решение


Правильную четырёхугольную пирамиду PQRST с вершиной P пересекает плоскость, проходящая через основание M высоты PM , перпендикулярная грани SPT и параллельная ребру ST . Высота PM в два раза больше ребра ST . Найдите отношение площади получившегося сечения к площади основания пирамиды.

ВверхВниз   Решение


Окружность, построенная на стороне треугольника как на диаметре, проходит через середину другой стороны. Докажите, что треугольник равнобедренный.

ВверхВниз   Решение


Дана плоская замкнутая ломаная периметра 1. Доказать, что можно начертить круг радиусом $ {\frac{1}{4}}$, покрывающий всю ломаную.

ВверхВниз   Решение


а) Какое наибольшее число рёбер может быть в 30-вершинном графе, в котором нет треугольников?
б) Какое наибольшее число рёбер может быть в 30-вершинном графе, в котором нет полного подграфа из четырёх вершин?

ВверхВниз   Решение


В конусе расположены два одинаковых шара радиуса r , касающиеся основания конуса в точках, симметричных относительно центра основания. Каждый из шаров касается боковой поверхности конуса и другого шара. Найдите угол между образующей конуса и основанием, при которой объём конуса наименьший.

ВверхВниз   Решение


Трапеция KLMN с основаниями KN и LM вписана в окружность, центр которой лежит на основании KN. Диагональ KM трапеции равна 4, а боковая сторона KL равна 3. Найдите основание LM.

ВверхВниз   Решение


В график функции, симметричной относительно оси ординат, вписана "ёлочка" высотой 1. Известно, что "ветки" ёлочки составляют угол 450 с вертикалью. Найдите периметр ёлочки (т.е. сумму длин всех зеленых отрезков).

ВверхВниз   Решение


В конусе расположены два шара единичного радиуса, центры которых находятся на оси симметрии конуса. Один из шаров касается боковой поверхности конуса, а другой – основания конуса и первого шара. Найдите угол между образующей конуса и основанием, при котором объём конуса наименьший.

ВверхВниз   Решение


В треугольнике ABC с периметром 2p острый угол BAC равен $ \alpha$. Окружность с центром в точке O касается стороны BC и продолжения сторон AB и AC в точках K и L соответственно. Точка D лежит внутри отрезка AK, AD = a. Найдите площадь треугольника DOK.

ВверхВниз   Решение


Автор: Фольклор

В Чикаго живут 36 гангстеров, некоторые из которых враждуют между собой. Каждый гангстер состоит в нескольких бандах, причём нет двух банд с совпадающим составом. Оказалось, что гангстеры, состоящие в одной банде, не враждуют, но если гангстер не состоит в какой-то банде, то он враждует хотя бы с одним её участником. Какое наибольшее число банд могло быть в Чикаго?

Вверх   Решение

Задачи

Страница: << 4 5 6 7 8 9 10 >> [Всего задач: 82]      



Задача 64663

Темы:   [ Теория графов (прочее) ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 4+
Классы: 10,11

Каждому городу в некоторой стране присвоен индивидуальный номер. Имеется список, в котором для каждой пары номеров указано, соединены города с данными номерами железной дорогой или нет. Оказалось, что, какие ни взять два номера M и N из списка, можно так перенумеровать города, что город с номером M получит номер N, но список по-прежнему будет верным. Верно ли, что, какие ни взять два номера M и N из списка, можно так перенумеровать города, что город с номером M получит номер N, город с номером N получит номер M, но список по-прежнему будет верным?

Прислать комментарий     Решение

Задача 64727

Темы:   [ Теория графов (прочее) ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 4+
Классы: 10,11

В королевстве некоторые пары городов соединены железной дорогой. У короля есть полный список, в котором поименно перечислены все такие пары (каждый город имеет свое собственное имя). Оказалось, что для любой упорядоченной пары городов принц может переименовать все города так, чтобы первый город оказался названным именем второго города, а король не заметил бы изменений. Верно ли, что для любой пары городов принц может переименовать все города так, чтобы первый город оказался названным именем второго города, второй город оказался названным именем первого города, а король не заметил бы изменений?

Прислать комментарий     Решение

Задача 78163

Тема:   [ Теория графов (прочее) ]
Сложность: 4+
Классы: 10,11

Между зажимами A и B включено несколько сопротивлений. Каждое сопротивление имеет входной и выходной зажимы. Какое наименьшее число сопротивлений необходимо иметь и какова может быть схема их соединения, чтобы при порче любых девяти сопротивлений цепь оставалась соединяющей зажимы A и B, но не было короткого замыкания? (Порча сопротивления: короткое замыкание или обрыв.)

Прислать комментарий     Решение

Задача 116762

Темы:   [ Теория графов (прочее) ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 4+
Классы: 9,10

В некотором городе сеть автобусных маршрутов устроена так, что каждые два маршрута имеют ровно одну общую остановку, и на каждом маршруте есть хотя бы 4 остановки. Докажите, что все остановки можно распределить между двумя компаниями так, что на каждом маршруте найдутся остановки обеих компаний.

Прислать комментарий     Решение

Задача 66088

Темы:   [ Теория графов (прочее) ]
[ Процессы и операции ]
[ Разбиения на пары и группы; биекции ]
[ Произведения и факториалы ]
[ Индукция (прочее) ]
Сложность: 5-
Классы: 9,10,11

Автор: Фольклор

В Чикаго орудует 36 преступных банд, некоторые из которых враждуют между собой. Каждый гангстер состоит в нескольких бандах, причём каждые два гангстера состоят в разных наборах банд. Известно, что ни один гангстер не состоит в двух бандах, враждующих между собой. Кроме того, оказалось, что каждая банда, в которой не состоит некоторый гангстер, враждует с какой-то бандой, в которой данный гангстер состоит. Какое наибольшее количество гангстеров может быть в Чикаго?

Прислать комментарий     Решение

Страница: << 4 5 6 7 8 9 10 >> [Всего задач: 82]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .