Страница:
<< 1 2 3
4 5 6 7 >> [Всего задач: 41]
|
|
Сложность: 3 Классы: 8,9,10,11
|
Даны $n$ натуральных чисел. Боря для каждой пары этих чисел записал на чёрную доску их среднее арифметическое, а на белую доску — их среднее геометрическое,
и для каждой пары хотя бы одно из этих двух средних было целым. Докажите, что хотя бы на одной из досок все числа целые.
|
|
Сложность: 3 Классы: 8,9,10,11
|
Может ли произведение каких-то 9 последовательных натуральных чисел равняться сумме (может быть, других) 9 последовательных натуральных чисел?
|
|
Сложность: 3 Классы: 7,8,9,10
|
Число $2021 = 43\cdot47$ составное. Докажите, что если вписать в числе $2021$ сколько угодно восьмёрок между $20$ и $21$, тоже получится составное число.
Натуральные числа a, b, c, d таковы, что ab = cd. Докажите, что найдутся такие натуральные u, v, w, z, что a = uv, b = wz, c = uw, d = vz.
|
|
Сложность: 3+ Классы: 8,9,10
|
На доску выписали все собственные делители некоторого составного натурального числа n, увеличенные на 1. Найдите все такие числа n, для которых числа на доске окажутся всеми собственными делителями некоторого натурального числа m.
Страница:
<< 1 2 3
4 5 6 7 >> [Всего задач: 41]