ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

У фокусника и помощника есть колода с картами; одна сторона ("рубашка") у всех карт одинакова, а другая окрашена в один из 2017 цветов (в колоде по 1000000 карт каждого цвета). Фокусник и помощник собираются показать следующий фокус. Фокусник выходит из зала, а зрители выкладывают на стол в ряд  n > 1  карт рубашками вниз. Помощник смотрит на эти карты, а затем все, кроме одной, переворачивает рубашкой вверх, не меняя их порядка. Затем входит фокусник, смотрит на стол, указывает на одну из закрытых карт и называет её цвет. При каком наименьшем k фокусник может заранее договориться с помощником так, чтобы фокус гарантированно удался?

   Решение

Задачи

Страница: << 71 72 73 74 75 76 77 >> [Всего задач: 383]      



Задача 66165

Темы:   [ Примеры и контрпримеры. Конструкции ]
[ Доказательство от противного ]
[ Мощность множества. Взаимно-однозначные отображения ]
[ Теория графов (прочее) ]
[ Оценка + пример ]
Сложность: 5
Классы: 9,10,11

У фокусника и помощника есть колода с картами; одна сторона ("рубашка") у всех карт одинакова, а другая окрашена в один из 2017 цветов (в колоде по 1000000 карт каждого цвета). Фокусник и помощник собираются показать следующий фокус. Фокусник выходит из зала, а зрители выкладывают на стол в ряд  n > 1  карт рубашками вниз. Помощник смотрит на эти карты, а затем все, кроме одной, переворачивает рубашкой вверх, не меняя их порядка. Затем входит фокусник, смотрит на стол, указывает на одну из закрытых карт и называет её цвет. При каком наименьшем k фокусник может заранее договориться с помощником так, чтобы фокус гарантированно удался?

Прислать комментарий     Решение

Задача 79405

Темы:   [ Разложение в произведение транспозиций и циклов ]
[ Примеры и контрпримеры. Конструкции ]
[ Процессы и операции ]
[ Теория графов (прочее) ]
Сложность: 5
Классы: 9,10,11

За круглым столом сидят n человек. Разрешается любых двух людей, сидящих рядом, поменять местами. Какое наименьшее число таких перестановок необходимо сделать, чтобы в результате каждые два соседа остались бы соседями, но сидели бы в обратном порядке?

Прислать комментарий     Решение

Задача 109579

Темы:   [ Выпуклая оболочка и опорные прямые (плоскости) ]
[ Индукция в геометрии ]
[ Выпуклые многоугольники ]
[ Обход графов ]
Сложность: 5
Классы: 9,10,11

Внутри круга расположены точки A1, A2, ..., An, а на его границе – точки B1, B2, ..., Bn так, что отрезки A1B1, A2B2, ..., AnBn не пересекаются. Кузнечик может перепрыгнуть из точки Ai в точку Aj, если отрезок AiAj не пересекается ни с одним из отрезков AkBk,  k ≠ i, j.
Докажите, что за несколько прыжков кузнечик сможет попасть из каждой точки Ap в любую точку Aq.
Прислать комментарий     Решение


Задача 98211

Темы:   [ Принцип крайнего (прочее) ]
[ Степень вершины ]
[ Связность и разложение на связные компоненты ]
[ Принцип Дирихле (прочее) ]
[ Деревья ]
Сложность: 3+
Классы: 7,8,9

Автор: Вялый М.Н.

Каждый из 450 депутатов парламента дал пощёчину ровно одному своему коллеге.
Докажите, что можно избрать парламентскую комиссию из 150 человек, среди членов которой никто никого не бил.

Прислать комментарий     Решение

Задача 108403

Темы:   [ Ориентированные графы ]
[ Деревья ]
[ Раскраски ]
[ Связность и разложение на связные компоненты ]
[ Степень вершины ]
Сложность: 4-
Классы: 7,8,9

Выбежав после уроков на двор, каждый школьник кинул снежком ровно в одного другого школьника.
Докажите, что всех учащихся можно разбить на три команды так, что члены одной команды друг в друга снежками не кидали.

Прислать комментарий     Решение

Страница: << 71 72 73 74 75 76 77 >> [Всего задач: 383]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .