Страница:
<< 4 5 6 7
8 9 10 >> [Всего задач: 49]
Найдите число прямоугольников, составленных из клеток доски с m горизонталями и n вертикалями, которые содержат клетку с координатами (p, q).
На клетчатой бумаге нарисован прямоугольник 2 × 3. Отметьте вершины квадрата, стороны которого равны диагонали этого прямоугольника (не используя чертежных инструментов).
Через центры некоторых клеток шахматной доски 8×8 проведена замкнутая ломаная без самопересечений. Каждое звено ломаной соединяет центры соседних по горизонтали, вертикали или диагонали клеток. Докажите, что в ограниченной ею части доски общая площадь чёрных кусков равна общей площади белых кусков.
|
|
Сложность: 3+ Классы: 8,9,10
|
На какое наибольшее число равных невыпуклых многоугольников можно разрезать квадрат так, чтобы все стороны многоугольников были параллельны сторонам квадрата и никакие два из этих многоугольников не получались друг из друга параллельным переносом?
Юра начертил на клетчатой бумаге прямоугольник (по клеточкам) и нарисовал на нём картину. После этого он нарисовал вокруг картины рамку шириной в одну клеточку (см. рис.). Оказалось, что площадь картины равна площади рамки. Какие размеры могла иметь Юрина картина?
Страница:
<< 4 5 6 7
8 9 10 >> [Всего задач: 49]