ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи Даны три ненулевых действительных числа. Если поставить их в любом порядке в качестве коэффициентов квадратного трёхчлена, то трёхчлен будет иметь действительный корень. Верно ли, что каждый из этих трёхчленов будет иметь положительный корень? ![]() |
Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 80]
Уравнение x² + px + q = 0 имеет корни x1 и x2. Напишите уравнение, корнями которого будут числа y1, y2 равные: а)
Даны три ненулевых действительных числа. Если поставить их в любом порядке в качестве коэффициентов квадратного трёхчлена, то трёхчлен будет иметь действительный корень. Верно ли, что каждый из этих трёхчленов будет иметь положительный корень?
Дискриминанты трёх приведённых квадратных трёхчленов равны 1, 4 и 9.
У квадратного уравнения x² + px + q = 0 коэффициенты p и q увеличили на единицу. Эту операцию повторили четыре раза. Приведите пример такого исходного уравнения, что у каждого из пяти полученных уравнений корни были бы целыми числами.
У квадратного уравнения x² + px + q = 0 коэффициенты p и q увеличили на единицу. Эту операцию повторили девять раз.
Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 80] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |