ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Сколько (максимум) кругов можно расположить на плоскости так, чтобы каждые два из них пересекались, а никакие три – нет?

   Решение

Задачи

Страница: 1 2 >> [Всего задач: 6]      



Задача 66767

Темы:   [ Внутренность и внешность. Лемма Жордана ]
[ Четность и нечетность ]
Сложность: 4
Классы: 10,11

В игре Тантрикс-солитер возможны фишки 14 типов:

Каждую из них можно поворачивать, но нельзя переворачивать: именно поэтому первые 2 фишки разные – их нельзя получить друг из друга поворотом. Их разрешается прикладывать друг к другу так, чтобы линии одного цвета были продолжениями друг друга. У Саши было по одной фишке каждого типа, и он мог выложить их так, чтобы все синие линии образовывали «петлю», и при этом чтобы в картинке не было «дырок»:

Саша потерял фишку . Докажите, что теперь он не сможет выложить оставшиеся 13 фишек так, чтобы в картинке не было «дырок», а все синие линии образовывали петлю.

Прислать комментарий     Решение

Задача 109642

Темы:   [ Внутренность и внешность. Лемма Жордана ]
[ Произвольные многоугольники ]
[ Четность и нечетность ]
Сложность: 4
Классы: 8,9,10,11

Автор: Мусин О.

Даны многоугольник, прямая l и точка P на прямой l в общем положении (то есть все прямые, содержащие стороны многоугольника, пересекают l в различных точках, отличных от P). Отметим те вершины многоугольника, для каждой из которых прямые, на которых лежат выходящие из неё стороны многоугольника, пересекают l по разные стороны от точки P. Докажите, что точка P лежит внутри многоугольника тогда и только тогда, когда по каждую сторону от l отмечено нечётное число вершин.

Прислать комментарий     Решение

Задача 98596

Темы:   [ Теория алгоритмов (прочее) ]
[ Связность и разложение на связные компоненты ]
[ Внутренность и внешность. Лемма Жордана ]
[ Оценка + пример ]
Сложность: 4
Классы: 8,9,10

а) Электрическая схема имеет вид решетки 3×3: всего в схеме 16 узлов (вершины квадратиков решётки), которые соединены проводами (стороны квадратиков решётки). Возможно, часть проводов перегорела. За одно измерение можно выбрать любую пару узлов схемы и проверить, проходит ли между ними ток (то есть, проверить, существует ли цепочка неперегоревших проводов, соединяющая эти узлы). В действительности схема такова, что ток проходит от каждого узла к любому другому. За какое наименьшее число измерений всегда можно в этом удостовериться?

б) Тот же вопрос для решётки 5×5 (всего 36 узлов).

Прислать комментарий     Решение

Задача 98603

Темы:   [ Теория алгоритмов (прочее) ]
[ Связность и разложение на связные компоненты ]
[ Внутренность и внешность. Лемма Жордана ]
[ Оценка + пример ]
Сложность: 4+
Классы: 9,10,11

а) Электрическая схема имеет вид решётки 3×3: всего в схеме 16 узлов (вершины квадратиков решётки), которые соединены проводами (стороны квадратиков решётки). Возможно, часть проводов перегорела. За одно измерение можно выбрать любую пару узлов схемы и проверить, проходит ли между ними ток (то есть, проверить, существует ли цепочка неперегоревших проводов, соединяющая эти узлы). В действительности схема такова, что ток проходит от любого узла к любому. За какое наименьшее число измерений всегда можно в этом удостовериться?

б) Тот же вопрос для решётки 7×7 (всего 64 узла).

Прислать комментарий     Решение

Задача 66239

Темы:   [ Пересекающиеся окружности ]
[ Комбинаторная геометрия (прочее) ]
[ Выпуклые и невыпуклые фигуры (прочее) ]
[ Внутренность и внешность. Лемма Жордана ]
Сложность: 4
Классы: 9,10,11

Сколько (максимум) кругов можно расположить на плоскости так, чтобы каждые два из них пересекались, а никакие три – нет?

Прислать комментарий     Решение

Страница: 1 2 >> [Всего задач: 6]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .