ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Автор: Нилов Ф.

Центр окружности ω2 лежит на окружности ω1. Из точки X окружности ω1 проведены касательные XP и XQ к окружности ω2 (P и Q – точки касания), которые повторно пересекают ω1 в точках R и S. Докажите, что прямая PQ проходит через середину отрезка RS.

   Решение

Задачи

Страница: << 21 22 23 24 25 26 27 >> [Всего задач: 283]      



Задача 55544

Темы:   [ Теорема синусов ]
[ Две касательные, проведенные из одной точки ]
[ Правильный (равносторонний) треугольник ]
[ Вписанные и описанные окружности ]
[ Равные треугольники. Признаки равенства (прочее) ]
Сложность: 3+
Классы: 8,9,10

Dписанная окружность треугольника ABC касается сторон AB, BC и AC в точках C1, A1 и B1 соответственно. Известно, что  AA1 = BB1 = CC1.  Докажите, что треугольник ABC правильный.

Прислать комментарий     Решение

Задача 56476

Темы:   [ Равнобедренные, вписанные и описанные трапеции ]
[ Две касательные, проведенные из одной точки ]
[ Вспомогательные подобные треугольники ]
[ Теорема Фалеса и теорема о пропорциональных отрезках ]
[ Средние пропорциональные в прямоугольном треугольнике ]
Сложность: 3+
Классы: 9

В трапецию ABCD  (BC || AD)  вписана окружность, касающаяся боковых сторон AB и CD в точках K и L соответственно, а оснований AD и BC в точках M и N.
  а) Пусть Q – точка пересечения отрезков BM и AN. Докажите, что  KQ || AD.
  б) Докажите, что  AK·KB = CL·LD.

Прислать комментарий     Решение

Задача 56882

Темы:   [ Вписанные и описанные окружности ]
[ Две касательные, проведенные из одной точки ]
[ Средняя линия треугольника ]
[ Параллельные прямые, свойства и признаки. Секущие ]
Сложность: 3+
Классы: 8,9

В треугольнике ABC сторона AB больше стороны BC. Пусть A1 и B1 – середины сторон BC и AC, а B2 и C2 – точки касания вписанной окружности со сторонами AC и AB. Докажите, что отрезки A1B1 и B2C2 пересекаются в точке X, лежащей на биссектрисе угла B.

Прислать комментарий     Решение

Задача 66264

Темы:   [ Пересекающиеся окружности ]
[ Две касательные, проведенные из одной точки ]
[ Три точки, лежащие на одной прямой ]
[ Биссектриса делит дугу пополам ]
[ Прямая Симсона ]
Сложность: 3+
Классы: 8,9,10

Автор: Нилов Ф.

Центр окружности ω2 лежит на окружности ω1. Из точки X окружности ω1 проведены касательные XP и XQ к окружности ω2 (P и Q – точки касания), которые повторно пересекают ω1 в точках R и S. Докажите, что прямая PQ проходит через середину отрезка RS.

Прислать комментарий     Решение

Задача 98463

Темы:   [ Вневписанные окружности ]
[ Две касательные, проведенные из одной точки ]
[ Признаки и свойства равнобедренного треугольника. ]
[ Равнобедренные, вписанные и описанные трапеции ]
[ Средняя линия трапеции ]
[ Симметрия помогает решить задачу ]
Сложность: 3+
Классы: 10,11

Вневписанные окружности касаются сторон AC и BC треугольника ABC в точках K и L. Докажите, что прямая, соединяющая середины KL и AB,
  а) делит периметр треугольника ABC пополам;
  б) параллельна биссектрисе угла ACB.

Прислать комментарий     Решение

Страница: << 21 22 23 24 25 26 27 >> [Всего задач: 283]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .