ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи Дан куб ABCDA1B1C1D1 . На отрезках AB1 и BC1 взяты точки P и Q , причём AP:PB1 = C1Q:QB = 2:1 . Докажите, что отрезок PQ перпендикулярен прямым AB1 и C1B , и найдите его длину, если ребро куба равно a . ![]() ![]() Докажите, что в остроугольном треугольнике расстояние от любой вершины до соответствующего центра вневписанной окружности меньше чем сумма двух наибольших сторон треугольника. ![]() ![]() |
Страница: << 1 2 3 4 5 >> [Всего задач: 23]
Докажите, что в остроугольном треугольнике расстояние от любой вершины до соответствующего центра вневписанной окружности меньше чем сумма двух наибольших сторон треугольника.
a) на плоскости; б) в пространстве?
Диагональ AC разбивает выпуклый четырёхугольник ABCD на две равновеликие части. Докажите, что если AB > AD, то BC < DC.
Страница: << 1 2 3 4 5 >> [Всего задач: 23] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |