ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Автор: Белухов Н.

Шесть кругов с радиусами, равными 1, расположены на плоскости так, что расстояние между центрами любых двух из них больше $d$. При каком наименьшем $d$ можно утверждать, что найдется прямая, не пересекающая ни одного из кругов, по каждую сторону от которой лежат три круга?

   Решение

Задачи

Страница: << 1 2 3 4 5 >> [Всего задач: 23]      



Задача 115501

Темы:   [ Задачи на максимум и минимум (прочее) ]
[ Четность и нечетность ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 4+
Классы: 8,9,10

На окружности расставлены 2009 чисел, каждое из которых равно 1 или –1, причём не все числа одинаковые. Рассмотрим всевозможные десятки подряд стоящих чисел. Найдём произведения чисел в каждом десятке и сложим их. Какая наибольшая сумма может получиться?

Прислать комментарий     Решение

Задача 77879

Темы:   [ Задачи на максимум и минимум (прочее) ]
[ Скалярное произведение ]
Сложность: 4+
Классы: 10,11

Каково наибольшее возможное число лучей в пространстве, выходящих из одной точки и образующих попарно тупые углы?
Прислать комментарий     Решение


Задача 66663

Тема:   [ Задачи на максимум и минимум (прочее) ]
Сложность: 5+
Классы: 10,11

Автор: Белухов Н.

Шесть кругов с радиусами, равными 1, расположены на плоскости так, что расстояние между центрами любых двух из них больше $d$. При каком наименьшем $d$ можно утверждать, что найдется прямая, не пересекающая ни одного из кругов, по каждую сторону от которой лежат три круга?
Прислать комментарий     Решение


Задача 104119

Темы:   [ Куб ]
[ Задачи на максимум и минимум (прочее) ]
Сложность: 3-
Классы: 7,8,9

На прозрачном столе стоит куб 3×3×3, составленный из 27 одинаковых кубиков. Со всех шести сторон (спереди, сзади, слева, справа, сверху, снизу) мы видим квадрат 3×3. Какое наибольшее число кубиков можно убрать так, чтобы со всех сторон был виден квадрат 3×3 и при этом оставшаяся система кубиков не разваливалась?
Прислать комментарий     Решение


Задача 66639

Темы:   [ Теория алгоритмов (прочее) ]
[ Задачи на максимум и минимум (прочее) ]
Сложность: 3
Классы: 8,9,10,11

Марина купила тур в Банановую страну с 5 по 22 октября. Ввозить и вывозить бананы через границу запрещено. Банановый король в начале каждого месяца издаёт указ о ценах. Цена одного банана в местной валюте на нужные числа октября приведена в таблице:

$\,$5 $\,$6 $\,$7 $\,$8 $\,$9 10 11 12 13 14 15 16 17 18 19 20 21 22
8,1 $\,$8 $\,$7 8,1 $\,$9 $\,$8 8,1 7,2 $\,$7 $\,$8 $\,$9 8,1 $\,$9 $\,$8 $\,$9 8,2 $\,$7 7,1

Марина хочет ежедневно съедать по одному банану. Она любит только зелёные бананы, поэтому согласна съесть банан только в течение 4 дней после покупки. Например, банан, купленный 5 октября, Марина согласна съесть 5, 6, 7 или 8 октября. Марина может запасаться бананами, когда они подешевле.

В какие дни по сколько бананов надо покупать Марине, чтобы потратить как можно меньше денег?

Прислать комментарий     Решение

Страница: << 1 2 3 4 5 >> [Всего задач: 23]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .