Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 6 задач
Версия для печати
Убрать все задачи

В прямоугольном треугольнике длины сторон – натуральные взаимно простые числа.
Докажите, что длина гипотенузы – нечётное число, а длины катетов имеют разную чётность.

Вниз   Решение


Стороны выпуклого пятиугольника ABCDE продолжили так, что образовалась пятиконечная звезда AHBKCLDMEN (рис.). Около треугольников — лучей звезды описали окружности. Докажите, что пять точек пересечения этих окружностей, отличных от A, B, C, D, E, лежат на одной окружности.


ВверхВниз   Решение


Длины всех сторон прямоугольного треугольника являются целыми числами, причем наибольший общий делитель этих чисел равен 1. Докажите, что его катеты равны 2mn и m2 - n2, а гипотенуза равна m2 + n2, где m и n — натуральные числа.



ВверхВниз   Решение


Даны окружность S и две хорды AB и CD. Циркулем и линейкой постройте на окружности такую точку X, чтобы прямые AX и BX высекали на CD отрезок а) имеющий данную длину a; б) делящийся пополам в данной точке E хорды CD.

ВверхВниз   Решение


Через точку M, лежащую внутри угла с вершиной A, проведены прямые, параллельные сторонам угла и пересекающие эти стороны в точках B и C. Известно, что  ∠ACB = 50°,  а угол, смежный с углом ACM, равен 40°. Найдите углы треугольников BCM и ABC.

ВверхВниз   Решение


Автор: Saghafian M.

Мортеза отметил на плоскости шесть точек и нашел площади всех 20 треугольников с вершинами в этих точках. Может ли оказаться, что все полученные числа целые, а их сумма равна 2019?

Вверх   Решение

Задачи

Страница: 1 2 3 4 5 6 7 >> [Всего задач: 148]      



Задача 103947

Тема:   [ Площадь фигуры равна сумме площадей фигур, на которые она разбита ]
Сложность: 2
Классы: 5,6,7

Найдите площадь фигур, изображенных на рисунке.

Прислать комментарий     Решение

Задача 66779

Темы:   [ Площадь фигуры равна сумме площадей фигур, на которые она разбита ]
[ Четность и нечетность ]
[ Комбинаторная геометрия (прочее) ]
Сложность: 3
Классы: 8,9,10,11

Автор: Saghafian M.

Мортеза отметил на плоскости шесть точек и нашел площади всех 20 треугольников с вершинами в этих точках. Может ли оказаться, что все полученные числа целые, а их сумма равна 2019?
Прислать комментарий     Решение


Задача 110843

Темы:   [ Площадь фигуры равна сумме площадей фигур, на которые она разбита ]
[ Признаки и свойства касательной ]
Сложность: 3
Классы: 8,9

Центр окружности, касающейся катетов AC и BC прямоугольного треугольника ABC лежит на гипотенузе AB . Найдите радиус окружности, если он в шесть раз меньше суммы катетов, а площадь треугольника ABC равна 27.
Прислать комментарий     Решение


Задача 110844

Темы:   [ Площадь фигуры равна сумме площадей фигур, на которые она разбита ]
[ Средние пропорциональные в прямоугольном треугольнике ]
[ Признаки и свойства касательной ]
Сложность: 3
Классы: 8,9

Окружность с центром на стороне AC равнобедренного треугольника ABC ( AB=BC ) касается сторон AB и BC , а сторону AC делит на три равные части. Найдите радиус окружности, если площадь треугольника ABC равна 9 .
Прислать комментарий     Решение


Задача 110845

Темы:   [ Площадь фигуры равна сумме площадей фигур, на которые она разбита ]
[ Признаки и свойства касательной ]
Сложность: 3
Классы: 8,9

Центр окружности, касающейся катетов AC и BC прямоугольного треугольника ABC лежит на гипотенузе AB . Найдите диаметр окружности, если он в четыре раза меньше суммы катетов, а площадь треугольника ABC равна 16.
Прислать комментарий     Решение


Страница: 1 2 3 4 5 6 7 >> [Всего задач: 148]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .