ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Докажите, что точки пересечения средних линий треугольника $ABC$ со сторонами треугольника, вершинами которого являются центры вневписанных окружностей, лежат на одной окружности. Решение |
Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 139]
В прямоугольный треугольник ABC с углом A, равным 30o, вписана окружность радиуса R. Вторая окружность, лежащая вне треугольника, касается стороны BC и продолжений двух других сторон. Найдите расстояние между центрами этих окружностей.
а) Какое наибольшее число различных может быть среди них? б) Найдите все возможные количества различных длин.
В треугольнике PQR угол QRP равен 60o. Найдите расстояние между точками касания со стороной QR окружности радиуса 2, вписанной в треугольник, и окружности радиуса 3, касающейся продолжений сторон PQ и PR.
Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 139] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|