ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Во вписанном четырехугольнике $ABCD$ произведения противоположных сторон равны. Точка $B'$ симметрична $B$ относительно прямой $AC$. Докажите, что окружность, проходящая через точки $A$, $B'$, $D$, касается прямой $AC$.

   Решение

Задачи

Страница: << 114 115 116 117 118 119 120 >> [Всего задач: 769]      



Задача 53261

Темы:   [ Тригонометрические соотношения в прямоугольном треугольнике ]
[ Теорема о длинах касательной и секущей; произведение всей секущей на ее внешнюю часть ]
[ Две касательные, проведенные из одной точки ]
Сложность: 3+
Классы: 8,9

В параллелограмме KLMN сторона KL равна 8. Окружность, касающаяся сторон NK и NM, проходит через точку L и пересекает стороны KL и ML в точках C и D соответственно. Известно, что KC : LC = 4 : 5 и LD : MD = 8 : 1. Найдите сторону KN.

Прислать комментарий     Решение


Задача 67103

Темы:   [ Вписанные четырехугольники (прочее) ]
[ Прямые, касающиеся окружностей (прочее) ]
[ Две касательные, проведенные из одной точки ]
[ Теорема синусов ]
Сложность: 3+
Классы: 9,10,11

Во вписанном четырехугольнике $ABCD$ произведения противоположных сторон равны. Точка $B'$ симметрична $B$ относительно прямой $AC$. Докажите, что окружность, проходящая через точки $A$, $B'$, $D$, касается прямой $AC$.
Прислать комментарий     Решение


Задача 53033

Темы:   [ Вписанный угол равен половине центрального ]
[ Угол между касательной и хордой ]
[ Две касательные, проведенные из одной точки ]
[ Площадь треугольника (через высоту и основание) ]
Сложность: 3+
Классы: 8,9

Стороны KN и LM трапеции KLMN параллельны, причём KN = 3, а угол M равен 120o. Прямые LM и MN являются касательными к окружности, описанной около треугольника KLN. Найдите площадь треугольника KLN.

Прислать комментарий     Решение


Задача 53263

Темы:   [ Вписанные и описанные окружности ]
[ Теорема косинусов ]
[ Две касательные, проведенные из одной точки ]
Сложность: 3+
Классы: 8,9

В треугольник ABC со стороной BC, равной 9, вписана окружность, касающаяся стороны BC в точке D. Известно, что AD = DC и косинус угла BCA равен $ {\frac{2}{3}}$. Найдите AC.

Прислать комментарий     Решение


Задача 53264

Темы:   [ Вписанные и описанные окружности ]
[ Теорема косинусов ]
[ Две касательные, проведенные из одной точки ]
Сложность: 3+
Классы: 8,9

В треугольник ABC со стороной BC, равной 11, вписана окружность, касающаяся стороны AB в точке D. Известно, что AC = CD и косинус угла BAC равен $ {\frac{1}{6}}$. Найдите AC.

Прислать комментарий     Решение


Страница: << 114 115 116 117 118 119 120 >> [Всего задач: 769]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .