ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

На урок физкультуры пришло $12$ детей, все разной силы. Учитель $10$ раз делил их на две команды по $6$ человек, каждый раз новым способом, и проводил состязание по перетягиванию каната. Могло ли оказаться так, что все $10$ раз состязание закончилось вничью (то есть суммы сил детей в командах были равны)?

   Решение

Задачи

Страница: << 6 7 8 9 10 11 12 >> [Всего задач: 171]      



Задача 30733

Темы:   [ Сочетания и размещения ]
[ Задачи с ограничениями ]
Сложность: 3
Классы: 8,9

На полке стоит 12 книг. Сколькими способами можно выбрать из них пять книг, никакие две из которых не стоят рядом?

Прислать комментарий     Решение

Задача 30749

Темы:   [ Сочетания и размещения ]
[ Перестановки и подстановки (прочее) ]
Сложность: 3
Классы: 7,8,9

Имеется куб размером 10×10×10, состоящий из маленьких единичных кубиков. В центре O одного из угловых кубиков сидит кузнечик. Он может прыгать в центр кубика, имеющего общую грань с тем, в котором кузнечик находится в данный момент; причём так, чтобы расстояние до точки O увеличивалось. Сколькими способами кузнечик может допрыгать до кубика, противоположного исходному?

Прислать комментарий     Решение

Задача 35768

Темы:   [ Сочетания и размещения ]
[ Системы точек ]
Сложность: 3
Классы: 7,8,9

Нарисуйте на плоскости шесть точек так, чтобы они служили вершинами ровно для 17 треугольников.

Прислать комментарий     Решение

Задача 66005

Темы:   [ Сочетания и размещения ]
[ Принцип Дирихле (прочее) ]
Сложность: 3
Классы: 8,9,10,11

Жили-были двадцать шпионов. Каждый из них написал донос на десять своих коллег.
Докажите, что не менее, чем десять пар шпионов донесли друг на друга.

Прислать комментарий     Решение

Задача 67301

Темы:   [ Сочетания и размещения ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 3
Классы: 6,7,8,9

На урок физкультуры пришло $12$ детей, все разной силы. Учитель $10$ раз делил их на две команды по $6$ человек, каждый раз новым способом, и проводил состязание по перетягиванию каната. Могло ли оказаться так, что все $10$ раз состязание закончилось вничью (то есть суммы сил детей в командах были равны)?
Прислать комментарий     Решение


Страница: << 6 7 8 9 10 11 12 >> [Всего задач: 171]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .