ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 3 задачи
Версия для печати
Убрать все задачи

У восьми фермеров есть клетчатое поле 8×8, огороженное по периметру забором и сплошь заросшее ягодами (в каждой точке поля, кроме точек забора, растёт ягода). Фермеры поделили поле между собой по линиям сетки на 8 участков равной площади (каждый участок – многоугольник), но границы отмечать не стали. Каждый фермер следит только за ягодами внутри (не на границе) своего участка, а пропажу замечает, только если у него пропали хотя бы две ягоды. Всё это известно вороне, но где проходят границы между участками, она не знает. Может ли ворона утащить с поля 9 ягод так, чтобы пропажу гарантированно ни один фермер не заметил?

Вниз   Решение


Около окружности описан четырёхугольник. Его диагонали пересекаются в центре этой окружности. Докажите, что этот четырёхугольник — ромб.

ВверхВниз   Решение


На доске написаны два натуральных числа, одно из которых получается из другого перестановкой цифр. Может ли их разность равняться $2025$? (Запись натурального числа не может начинаться с нуля.)

Вверх   Решение

Задачи

Страница: << 6 7 8 9 10 11 12 >> [Всего задач: 84]      



Задача 66363

Тема:   [ Арифметические действия. Числовые тождества ]
Сложность: 3
Классы: 7,8,9

За контрольную работу каждый из 25 школьников получил одну из оценок "3", "4" или "5". На сколько больше было пятёрок, чем троек, если сумма всех оценок равна 106?

Прислать комментарий     Решение

Задача 66395

Тема:   [ Арифметические действия. Числовые тождества ]
Сложность: 3
Классы: 7,8

Автор: Фольклор

Объем бутылки кваса – 1,5 литра. Первый выпил половину бутылки, второй – треть того, что осталось после первого, третий – четверть оставшегося от предыдущих, и так далее, четырнадцатый – пятнадцатую часть оставшегося. Сколько кваса осталось в бутылке?
Прислать комментарий     Решение


Задача 67012

Темы:   [ Арифметические действия. Числовые тождества ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 3
Классы: 8,9,10,11

Незнайка не знает о существовании операций умножения и возведения в степень. Однако он хорошо освоил сложение, вычитание, деление и извлечение квадратного корня, а также умеет пользоваться скобками. Упражняясь, Незнайка выбрал три числа 20, 2 и 2 и составил выражение $\sqrt{(2+20):2}$. А может ли он, используя точно те же три числа 20, 2 и 2, составить выражение, значение которого больше 30?
Прислать комментарий     Решение


Задача 67418

Темы:   [ Арифметические действия. Числовые тождества ]
[ Теория алгоритмов (прочее) ]
Сложность: 3
Классы: 7,8,9,10,11

Если Вася делит пирог или кусок пирога на две части, то всегда делает их равными по массе. А если делит на большее число частей, то может сделать их какими угодно, но обязательно все разной массы. За несколько таких дележей Вася разрезал пирог на 17 частей. Могли ли все части оказаться равными по массе? (Объединять части нельзя.)
Прислать комментарий     Решение


Задача 67443

Темы:   [ Арифметические действия. Числовые тождества ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 3
Классы: 7,8,9,10,11

На доске написаны два натуральных числа, одно из которых получается из другого перестановкой цифр. Может ли их разность равняться $2025$? (Запись натурального числа не может начинаться с нуля.)
Прислать комментарий     Решение


Страница: << 6 7 8 9 10 11 12 >> [Всего задач: 84]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .