ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Тема:
Все темы
>>
Логика и теория множеств
>>
Теория алгоритмов
>>
Теория игр
>>
Теория игр (прочее)
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Двое играют в «крестики–нолики» на бесконечном листе клетчатой бумаги. Начинающий ставит крестик в любую клетку. Каждым следующим своим ходом он должен ставить крестик в свободную клетку, соседнюю с одной из клеток, где уже стоит крестик; соседней с данной клеткой считаем любую, имеющую с ней общую сторону или общую вершину. Второй играющий каждым своим ходом может ставить сразу три нолика в любые три свободные клетки (не обязательно рядом друг с другом или с ранее поставленными ноликами). На рисунке изображена одна из позиций, которые могут возникнуть после третьего хода. Докажите, что как бы ни играл первый игрок, второй может его «запереть»: добиться того, чтобы первому было некуда поставить крестик. Исследуйте аналогичные игры, в которых второму разрешено за один ход ставить не три, а два или даже только один нолик. Каков здесь будет результат при правильной игре партнёров: удастся ли ноликам «запереть» крестики (и можно ли оценить сверху число ходов, которые могут «продержаться» крестики) или же крестики могут играть бесконечно долго? Попробуйте изучить другие варианты этой игры: когда соседними с данной считаем только клетки, имеющие с ней общую сторону; когда плоскость разбита не на квадраты, а на правильные шестиугольники; когда первому разрешено ставить сразу |
Страница: << 22 23 24 25 26 27 28 >> [Всего задач: 165]
Попробуйте изучить другие варианты этой игры: когда соседними с данной считаем только клетки, имеющие с ней общую сторону; когда плоскость разбита не на квадраты, а на правильные шестиугольники; когда первому разрешено ставить сразу
а) Предложите стратегию, для которой функция fT растёт медленнее. б) Сравнивая две стратегии, удобно для произвольной
У Аси и Васи есть три монеты. На разных сторонах одной монеты изображены ножницы и бумага, на сторонах другой монеты – камень и ножницы, на сторонах третьей – бумага и камень. Ножницы побеждают бумагу, бумага побеждает камень и камень побеждает ножницы. Сначала Ася выбирает себе монетку, потом Вася, потом они бросают свои монетки и смотрят, кто выиграл (если выпало одно и то же, то – ничья). Так они делают много раз. Есть ли возможность у Васи выбирать монету так, чтобы вероятность его выигрыша была выше, чем у Аси?
Страница: << 22 23 24 25 26 27 28 >> [Всего задач: 165] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|