ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Последовательность  x0, x1, x2, ...  определена следующими условиями:  x0 = 1,  x1 = λ,  для любого  n > 1  выполнено равенство

(α + β)nxn = αnxnx0 + αn–1βxn–1x1 + αn–2β2xn–2x2 + ... + βnx0xn.
Здесь α, β, λ – заданные положительные числа. Найдите xn и выясните, при каком n величина xn наибольшая.

   Решение

Задачи

Страница: << 43 44 45 46 47 48 49 >> [Всего задач: 328]      



Задача 66337

Темы:   [ Теория чисел. Делимость (прочее) ]
[ Десятичная система счисления ]
[ Индукция (прочее) ]
Сложность: 4
Классы: 8,9,10,11

Автор: Петров Ф.

Цифры натурального числа  $n$ > 1  записали в обратном порядке и результат умножили на $n$. Могло ли получиться число, записываемое только единицами?

Прислать комментарий     Решение

Задача 66727

Темы:   [ Деревья ]
[ Ориентированные графы ]
[ Индукция (прочее) ]
[ Теория игр (прочее) ]
Сложность: 4
Классы: 8,9,10,11

Автор: Дидин М.

В виртуальном компьютерном государстве не менее двух городов. Некоторые пары городов соединены дорогой, причём из каждого города можно добраться по дорогам до любого другого (переходить с дороги на дорогу разрешается только в городах). Если при этом можно, начав движение из какого-то города и не проходя дважды по одной и той же дороге, вернуться в этот город, государство называется сложным, иначе – простым. Петя и Вася играют в такую игру. В начале игры Петя указывает на каждой дороге направление, в котором по ней можно двигаться, и помещает в один из городов туриста. Далее за ход Петя перемещает туриста по дороге в разрешённом направлении в соседний город, а Вася в ответ меняет направление одной из дорог, входящей или выходящей из города, куда попал турист. Вася победит, если в какой-то момент Петя не сможет сделать ход. Докажите, что
  а) в простом государстве Петя может играть так, чтобы не проиграть, как бы ни играл Вася;
  б) в сложном государстве Вася может гарантировать себе победу, как бы ни играл Петя.

Прислать комментарий     Решение

Задача 73683

Темы:   [ Треугольник Паскаля и бином Ньютона ]
[ Рекуррентные соотношения (прочее) ]
[ Индукция (прочее) ]
Сложность: 4
Классы: 10,11

Последовательность  x0, x1, x2, ...  определена следующими условиями:  x0 = 1,  x1 = λ,  для любого  n > 1  выполнено равенство

(α + β)nxn = αnxnx0 + αn–1βxn–1x1 + αn–2β2xn–2x2 + ... + βnx0xn.
Здесь α, β, λ – заданные положительные числа. Найдите xn и выясните, при каком n величина xn наибольшая.

Прислать комментарий     Решение

Задача 73732

Темы:   [ Числовые таблицы и их свойства ]
[ Полуинварианты ]
[ Индукция (прочее) ]
Сложность: 4
Классы: 8,9,10

В прямоугольную таблицу из m строк и n столбцов записаны mn положительных чисел. Найдём в каждом столбце произведение чисел и сложим все n таких произведений. Докажите, что если переставить числа в каждой строке в порядке возрастания, то сумма аналогичных произведений будет не меньше, чем в первоначальной. Решите эту задачу для
  а)  m = n = 2;
  б)  m = 2  и произвольного n;
  в) любых натуральных m и n.

Прислать комментарий     Решение

Задача 73806

Темы:   [ Примеры и контрпримеры. Конструкции ]
[ Четность и нечетность ]
[ Индукция (прочее) ]
Сложность: 4
Классы: 7,8,9

Для всякого ли натурального n можно расставить первые n натуральных чисел в таком порядке, чтобы ни для каких двух чисел их полусумма не равнялась ни одному из чисел, расположенных между ними?

Прислать комментарий     Решение

Страница: << 43 44 45 46 47 48 49 >> [Всего задач: 328]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .