ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Подтемы:
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Решить уравнение:
| x + 1| - | x| + 3| x - 1| - 2| x - 2| = x + 2.
Решение |
Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 55]
| x + 1| - | x| + 3| x - 1| - 2| x - 2| = x + 2.
На окружности записаны шесть чисел: каждое равно модулю разности двух чисел,
стоящих после него по часовой стрелке.
По окружности записаны 30 чисел. Каждое из этих чисел равно модулю разности двух чисел, стоящих после него по часовой стрелке. Сумма всех чисел
По кругу выписаны 1000 чисел. Петя вычислил модули разностей соседних чисел, Вася – модули разностей чисел, стоящих через одно, а Толя – модули разностей чисел, стоящих через два. Известно, что каждое Петино число больше любого Васиного хотя бы вдвое. Докажите, что каждое Толино число не меньше любого Васиного.
Найдите максимальное значение выражения |...||x1 – x2| – x3| – ... – x1990|, где x1, x2, ..., x1990 – различные натуральные числа от 1 до 1990.
Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 55] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|