|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
Версия для печати
Убрать все задачи Найдите объём правильной треугольной пирамиды с боковым ребром b и углом α бокового ребра с плоскостью основания. Сто положительных чисел записаны по кругу. Квадрат каждого числа равен сумме двух чисел, стоящих за этим числом по часовой стрелке. а) Дан выпуклый многоугольник A1A2...An. На стороне A1A2 взяты точки B1 и D2, на стороне A2A3 – точки B2 и D3, ..., на стороне AnA1 – точки Bn и D1 так, что если построить параллелограммы A1B1C1D1, A2B2C2D2, ..., AnBnCnDn, то прямые A1C1, A2C2, ..., AnCn пересекутся в одной точке. Докажите равенство A1B1·A2B2·...·AnBn = A1D1·A2D2·...·AnDn. Египтяне вычисляли площадь выпуклого четырёхугольника по формуле (a+c)(b+d)/4 , где a , b , c , d — длины сторон в порядке обхода. Найдите все четырёхугольники, для которых эта формула верна. Найдите наименьшее значение функции y = (x-21)ex-20 на отрезке [19;21] . Найти такие целые числа x, y, z и t, что x² + y² + z² + t² = 2xyzt. |
Страница: 1 2 3 4 >> [Всего задач: 19]
б) Придумайте геометрическое доказательство иррациональности
В бесконечной последовательности (xn) первый член x1 – рациональное число, большее 1, и xn+1 = xn + 1/[xn] при всех натуральных n.
Доказать, что равенство x² + y² + z² = 2xyz для целых x, y и z возможно только при x = y = z = 0.
Докажите, что уравнения
Найти такие целые числа x, y, z и t, что x² + y² + z² + t² = 2xyzt.
Страница: 1 2 3 4 >> [Всего задач: 19] |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|