ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Найти геометрическое место середин отрезков с концами на двух различных непересекающихся окружностях, лежащих одна вне другой.

   Решение

Задачи

Страница: << 9 10 11 12 13 14 15 >> [Всего задач: 96]      



Задача 78035

Темы:   [ ГМТ с ненулевой площадью ]
[ Перенос помогает решить задачу ]
Сложность: 4
Классы: 8,9,10,11

Найти геометрическое место середин отрезков с концами на двух различных непересекающихся окружностях, лежащих одна вне другой.
Прислать комментарий     Решение


Задача 110866

Темы:   [ ГМТ - окружность или дуга окружности ]
[ Перенос помогает решить задачу ]
[ Гомотетия помогает решить задачу ]
Сложность: 4
Классы: 8,9

Дана окружность и её хорда AB . Для всех точек C окружности, отличных от A и B рассматриваются параллелограммы ABCD . Найдите геометрическое место: а) точек D ; б) центров параллелограммов ABCD .
Прислать комментарий     Решение


Задача 55667

Темы:   [ Композиции симметрий ]
[ Параллельный перенос (прочее) ]
Сложность: 4
Классы: 8,9

Докажите, что композиция трёх симметрий относительно параллельных прямых l1, l2 и l3 есть осевая симметрия.

Прислать комментарий     Решение


Задача 55666

Темы:   [ Композиции симметрий ]
[ Параллельный перенос (прочее) ]
Сложность: 4+
Классы: 8,9

Докажите, что композиция симметрий относительно n параллельных прямых l1, l2, ..., ln есть:

а) параллельный перенос, если n чётно;

б) осевая симметрия, если n нечётно.

Прислать комментарий     Решение


Задача 55670

Темы:   [ Композиции симметрий ]
[ Параллельный перенос (прочее) ]
Сложность: 4+
Классы: 8,9

Докажите, что композиция симметрий относительно n параллельных прямых l1, l2, ..., ln есть:

а) параллельный перенос, если n чётно;

б) осевая симметрия, если n нечётно.

Прислать комментарий     Решение


Страница: << 9 10 11 12 13 14 15 >> [Всего задач: 96]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .