Страница:
<< 17 18 19 20
21 22 23 >> [Всего задач: 416]
|
|
Сложность: 4 Классы: 9,10,11
|
На доске написаны $2n$ последовательных целых чисел. За ход можно
разбить написанные числа на пары произвольным образом и каждую пару
чисел заменить на сумму и разность чисел этой пары (не обязательно
вычитать из большего числа меньшее; все замены происходят
одновременно). Докажите, что на доске больше никогда не появятся $2n$
последовательных чисел.
|
|
Сложность: 4 Классы: 8,9,10,11
|
Дана возрастающая последовательность положительных чисел $...< a_{-2} < a_{-1} < a_{0} < a_{1} < a_{2} < ...,$ бесконечная в обе стороны. Пусть $b_k$ – наименьшее целое число со свойством: отношение суммы любых $k$ подряд идущих членов данной последовательности к наибольшему из этих $k$ членов не превышает $b_k$. Докажите, что последовательность $b_{1}, b_{2}, b_{3}$, ...
либо совпадает с натуральным рядом 1, 2, 3, ..., либо с некоторого момента постоянна.
|
|
Сложность: 4 Классы: 8,9,10,11
|
Докажите для любых натуральных чисел $a_1, a_2, ..., a_n$ неравенство $\bigg\lfloor\frac{a_1^2}{a_2}\bigg\rfloor + \bigg\lfloor\frac{a_2^2}{a_3}\bigg\rfloor + ... + \bigg\lfloor\frac{a_n^2}{a_1}\bigg\rfloor \geqslant a_1 + a_2 + ... +a_n$. ([$x$] – целая часть числа $x$.)
|
|
Сложность: 4 Классы: 10,11
|
Дана строго возрастающая функция $f\colon \mathbb{N}_0\to \mathbb{N}_0$ (где $\mathbb{N}_0$ — множество целых неотрицательных чисел), которая удовлетворяет соотношению $f(n+f(m))=f(n)+m+1$ для любых $m,n\in \mathbb{N}_0$. Найдите все значения, которые может принимать $f(2023)$.
Числа [
a], [2
a], ..., [
Na] различны между собой, и числа
,
, ...,
тоже различны между собой. Найти все такие
a.
Страница:
<< 17 18 19 20
21 22 23 >> [Всего задач: 416]