ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи Известно, что среди нескольких монет имеется ровно одна фальшивая
(отличается по весу от настоящих). С помощью двух взвешиваний на чашечных
весах без гирь определите, легче или тяжелее фальшивая монета настоящей
(находить ее не надо), если монет
В квадрате со стороной 1 проведено конечное количество отрезков, параллельных его сторонам. Отрезки могут пересекать друг друга. Сумма длин проведенных отрезков равна 18. Докажите, что среди частей, на которые разбивается квадрат этими отрезками, найдётся такая, площадь которой не меньше 0,01. Докажите равенство Внутри равностороннего треугольника со стороной 1
расположено пять точек. Докажите, что расстояние между
некоторыми двумя из них меньше 0, 5.
Вычислите производящие функции следующих последовательностей: Даны два набора из n вещественных чисел: a1, a2, ..., an и b1, b2, ..., bn. Докажите, что если выполняется хотя бы одно из двух условий: Какое слагаемое в разложении (1 + В разложении (x + y)n по формуле бинома Ньютона второй член оказался равен 240, третий – 720, а четвёртый – 1080. Найдите x, y и n. Докажите, что если p – простое число и 1 ≤ k ≤ p – 1, то На плоскости даны 25 точек; известно, что из любых трёх точек можно выбрать две, расстояние между которыми меньше 1. Доказать, что среди данных точек найдутся 13, лежащие в круге радиуса 1. |
Страница: << 4 5 6 7 8 9 10 >> [Всего задач: 126]
Какое наименьшее количество трехклеточных уголков можно разместить в квадрате 8× 8 так, чтобы в этот квадрат больше нельзя было поместить ни одного такого уголка?
В квадрате со стороной, равной 1, произвольно берут 101 точку (не обязательно внутри квадрата, возможно, часть на сторонах), причём никакие три из них не лежат на одной прямой. Докажите, что существует треугольник с вершинами в этих точках, площадь которого не больше 0,01.
Дан выпуклый 2000-угольник, никакие три диагонали которого не пересекаются в одной точке. Каждая из его диагоналей покрашена в один из 999 цветов. Докажите, что существует треугольник, все стороны которого целиком лежат на диагоналях одного цвета. (Вершины треугольника не обязательно должны оказаться вершинами исходного многоугольника.)
В квадрате со стороной 1 находится 51 точка.
Докажите, что какие-то три из них можно накрыть кругом
радиуса 1/7.
На плоскости даны 25 точек; известно, что из любых трёх точек можно выбрать две, расстояние между которыми меньше 1. Доказать, что среди данных точек найдутся 13, лежащие в круге радиуса 1.
Страница: << 4 5 6 7 8 9 10 >> [Всего задач: 126]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке