ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

На плоскости даны 25 точек; известно, что из любых трёх точек можно выбрать две, расстояние между которыми меньше 1. Доказать, что среди данных точек найдутся 13, лежащие в круге радиуса 1.

   Решение

Задачи

Страница: << 4 5 6 7 8 9 10 >> [Всего задач: 126]      



Задача 115449

Темы:   [ Принцип Дирихле (конечное число точек, прямых и т. д.) ]
[ Замощения костями домино и плитками ]
Сложность: 4
Классы: 8,9,10,11

Какое наименьшее количество трехклеточных уголков можно разместить в квадрате 8× 8 так, чтобы в этот квадрат больше нельзя было поместить ни одного такого уголка?
Прислать комментарий     Решение


Задача 116301

Темы:   [ Принцип Дирихле (конечное число точек, прямых и т. д.) ]
[ Неравенства с площадями ]
[ Площадь. Одна фигура лежит внутри другой ]
[ Площадь фигуры равна сумме площадей фигур, на которые она разбита ]
Сложность: 4
Классы: 8,9

В квадрате со стороной, равной 1, произвольно берут 101 точку (не обязательно внутри квадрата, возможно, часть на сторонах), причём никакие три из них не лежат на одной прямой. Докажите, что существует треугольник с вершинами в этих точках, площадь которого не больше 0,01.
Прислать комментарий     Решение


Задача 109748

Темы:   [ Принцип Дирихле (конечное число точек, прямых и т. д.) ]
[ Раскраски ]
[ Выпуклые многоугольники ]
[ Многоугольники (прочее) ]
Сложность: 4+
Классы: 8,9,10

Автор: Лифшиц Ю.

Дан выпуклый 2000-угольник, никакие три диагонали которого не пересекаются в одной точке. Каждая из его диагоналей покрашена в один из 999 цветов. Докажите, что существует треугольник, все стороны которого целиком лежат на диагоналях одного цвета. (Вершины треугольника не обязательно должны оказаться вершинами исходного многоугольника.)
Прислать комментарий     Решение


Задача 58085

Темы:   [ Принцип Дирихле (конечное число точек, прямых и т. д.) ]
[ Вписанные и описанные многоугольники ]
[ Покрытия ]
Сложность: 4+
Классы: 8,9,10

В квадрате со стороной 1 находится 51 точка. Докажите, что какие-то три из них можно накрыть кругом радиуса 1/7.
Прислать комментарий     Решение


Задача 78291

Темы:   [ Принцип Дирихле (конечное число точек, прямых и т. д.) ]
[ Принцип Дирихле (углы и длины) ]
[ Круг, сектор, сегмент и проч. ]
[ Системы точек ]
Сложность: 4+
Классы: 8,9,10

На плоскости даны 25 точек; известно, что из любых трёх точек можно выбрать две, расстояние между которыми меньше 1. Доказать, что среди данных точек найдутся 13, лежащие в круге радиуса 1.
Прислать комментарий     Решение


Страница: << 4 5 6 7 8 9 10 >> [Всего задач: 126]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .