|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
Версия для печати
Убрать все задачи Диагонали трапеции равны 6 и 8, а средняя линия равна 5. Найдите площадь трапеции. Даны двадцать карточек. Каждая из цифр от нуля до девяти включительно написана на двух из этих карточек (на каждой карточке – только одна цифра). Можно ли расположить эти карточки в ряд так, чтобы нули стояли рядом, между единицами лежала ровно одна карточка, между двойками – две, и так далее до девяток, между которыми должно быть девять карточек? |
Страница: << 7 8 9 10 11 12 13 >> [Всего задач: 222]
а) Докажите, что нельзя занумеровать рёбра куба числами 1, 2, ..., 11, 12 так, чтобы для каждой вершины сумма номеров трёх выходящих из неё рёбер была одной и той же. б) Можно ли вычеркнуть одно из чисел 1, 2, ..., 12, 13 и оставшимися занумеровать рёбра куба так, чтобы выполнялось то же условие?
Даны двадцать карточек. Каждая из цифр от нуля до девяти включительно написана на двух из этих карточек (на каждой карточке – только одна цифра). Можно ли расположить эти карточки в ряд так, чтобы нули стояли рядом, между единицами лежала ровно одна карточка, между двойками – две, и так далее до девяток, между которыми должно быть девять карточек?
За круглым столом сидят 13 богатырей из k городов, где 1 < k < 13. Каждый богатырь держит в руке золотой или серебряный кубок, причём золотых кубков тоже k. Князь повелел каждому богатырю передать свой кубок соседу справа и повторять это до тех пор, пока какие-нибудь два богатыря из одного города оба не получат золотые кубки. Доказать, что желание князя всегда будет исполнено.
Доказать, что в любой группе из 12 человек можно выбрать двоих, а среди оставшихся 10 человек еще пятерых так, чтобы каждый из этих пятерых удовлетворял следующему условию: либо он дружит с обоими выбранными вначале, либо не дружит ни с одним из них.
Страница: << 7 8 9 10 11 12 13 >> [Всего задач: 222] |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|