ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Два неравных картонных диска разделены на 1965 равных секторов. На каждом из дисков произвольно выбраны 200 секторов и раскрашены в красный цвет. Меньший диск наложен на больший, так что их центры совпадают, а секторы целиком лежат один против другого. Меньший диск поворачивают на всевозможные углы, кратные $ {\frac{1}{1965}}$ части окружности, оставляя больший диск неподвижным. Доказать, что по крайней мере при 60 положениях на дисках совпадут не более 20 красных секторов.

   Решение

Задачи

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 71]      



Задача 78768

Темы:   [ Принцип Дирихле (углы и длины) ]
[ Сумма внутренних и внешних углов многоугольника ]
Сложность: 4
Классы: 7,8,9

Известно, что в кадр фотоаппарата, расположенного в точке O, не могут попасть предметы A и B такие, что угол AOB больше 179o. На плоскости поставлено 1000 таких фотоаппаратов. Одновременно каждым фотоаппаратом делают по одному снимку. Доказать, что найдётся снимок, на котором сфотографировано не больше 998 фотоаппаратов.
Прислать комментарий     Решение


Задача 61283

Темы:   [ Принцип Дирихле (углы и длины) ]
[ Тригонометрические замены ]
[ Геометрические интерпретации в алгебре ]
Сложность: 4
Классы: 9,10,11

Докажите, что среди семи различных чисел всегда можно выбрать два числа x и y так, чтобы выполнялось неравенство

0 < $\displaystyle {\frac{x-y}{1+xy}}$ < $\displaystyle {\frac{1}{\sqrt3}}$.


Прислать комментарий     Решение

Задача 58094

Темы:   [ Принцип Дирихле (углы и длины) ]
[ Центральная симметрия помогает решить задачу ]
[ Центральный угол. Длина дуги и длина окружности ]
[ Связь величины угла с длиной дуги и хорды ]
Сложность: 4+
Классы: 8,9,10

В окружности радиуса 1 проведено несколько хорд. Докажите, что если каждый диаметр пересекает не более k хорд, то сумма длин хорд меньше $ \pi$k.
Прислать комментарий     Решение


Задача 78570

Темы:   [ Принцип Дирихле (углы и длины) ]
[ Разбиения на пары и группы; биекции ]
Сложность: 5-
Классы: 8,9,10

Два неравных картонных диска разделены на 1965 равных секторов. На каждом из дисков произвольно выбраны 200 секторов и раскрашены в красный цвет. Меньший диск наложен на больший, так что их центры совпадают, а секторы целиком лежат один против другого. Меньший диск поворачивают на всевозможные углы, кратные $ {\frac{1}{1965}}$ части окружности, оставляя больший диск неподвижным. Доказать, что по крайней мере при 60 положениях на дисках совпадут не более 20 красных секторов.
Прислать комментарий     Решение


Задача 58096

Темы:   [ Принцип Дирихле (углы и длины) ]
[ Ортогональная (прямоугольная) проекция ]
Сложность: 5
Классы: 8,9,10

Внутри окружности радиуса n расположено 4n отрезков длиной 1. Докажите, что можно провести прямую, параллельную или перпендикулярную данной прямой l и пересекающую по крайней мере два данных отрезка.
Прислать комментарий     Решение


Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 71]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .