|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Материалы по этой теме:
Подтемы:
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
Версия для печати
Убрать все задачи Число Y получается из натурального числа X некоторой перестановкой его цифр. Известно, что X + Y = 10200. Доказать, что X делится на 50. |
Страница: << 58 59 60 61 62 63 64 >> [Всего задач: 601]
Число Y получается из натурального числа X некоторой перестановкой его цифр. Известно, что X + Y = 10200. Доказать, что X делится на 50.
Доказать, что если натуральное число k делится на 10101010101, то в его десятичной записи по крайней мере шесть цифр отличны от нуля.
Доказать, что существует такое натуральное число n, большее 1000, что сумма цифр числа 2n больше суммы цифр числа 2n+1.
Является ли чётным число всех 64-значных натуральных чисел, не содержащих в записи нулей и делящихся на 101?
К некоторому натуральному числу справа последовательно приписали два двузначных числа. Полученное число оказалось равным кубу суммы трёх исходных чисел. Найдите все возможные тройки исходных чисел.
Страница: << 58 59 60 61 62 63 64 >> [Всего задач: 601] |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|