ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Как соединить 50 городов наименьшим числом авиалиний так, чтобы из каждого города можно было попасть в любой, сделав не более двух пересадок?

   Решение

Задачи

Страница: << 58 59 60 61 62 63 64 >> [Всего задач: 1027]      



Задача 78492

Темы:   [ Связность и разложение на связные компоненты ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 3
Классы: 7,8

Система точек, соединённых отрезками, называется "связной", если из каждой точки можно пройти в любую другую по этим отрезкам. Можно ли соединить пять точек в связную систему так, чтобы при стирании любого отрезка образовались ровно две связные системы точек, не связанные друг с другом? (Мы считаем, что в местах пересечения отрезков переход с одного из них на другой невозможен.)

Прислать комментарий     Решение

Задача 78651

Темы:   [ Числовые таблицы и их свойства ]
[ Примеры и контрпримеры. Конструкции ]
[ Разбиения на пары и группы; биекции ]
Сложность: 3
Классы: 7,8,9,10

Расставить в таблице 4×4 16 чисел так, чтобы сумма чисел по любой вертикали, горизонтали и диагонали равнялась нулю. (Таблица имеет 14 диагоналей, включая все малые, состоящие из трёх, двух и одной клеток. Хотя бы одно из чисел должно быть отлично от нуля.)

Прислать комментарий     Решение

Задача 78653

Темы:   [ Связность и разложение на связные компоненты ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 3
Классы: 8,9

Как соединить 50 городов наименьшим числом авиалиний так, чтобы из каждого города можно было попасть в любой, сделав не более двух пересадок?

Прислать комментарий     Решение

Задача 79350

Темы:   [ Замощения костями домино и плитками ]
[ Примеры и контрпримеры. Конструкции ]
[ Процессы и операции ]
Сложность: 3
Классы: 8

Доказать, что в прямоугольник размером 2n×2m (n и m — целые) можно уложить в два слоя кости домино размером 1×2 так, чтобы каждый слой полностью покрывал прямоугольник и чтобы никакие две кости из разных слоёв не совпадали друг с другом.
Прислать комментарий     Решение


Задача 79543

Темы:   [ Таблицы и турниры (прочее) ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 3
Классы: 8

Квадрат расчерчен на 16 равных клеток. Каждую из букв A, B, C, D расставьте в этих клетках по четыре раза таким образом, чтобы на каждой горизонтали, каждой вертикали и двух больших диагоналях не было одинаковых букв.

Прислать комментарий     Решение

Страница: << 58 59 60 61 62 63 64 >> [Всего задач: 1027]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .