ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Дана замкнутая пространственная ломаная с вершинами A1, A2, ..., An, причём каждое звено пересекает фиксированную сферу в двух точках, а все вершины ломаной лежат вне сферы. Эти точки делят ломаную на 3n отрезков. Известно, что отрезки, прилегающие к вершине A1, равны между собой. То же самое верно и для вершин A2, A3, ..., An - 1. Доказать, что отрезки, прилегающие к вершине An, также равны между собой.

   Решение

Задачи

Страница: << 108 109 110 111 112 113 114 >> [Всего задач: 769]      



Задача 78779

Темы:   [ Пространственные многоугольники ]
[ Сферы (прочее) ]
[ Теорема о длинах касательной и секущей; произведение всей секущей на ее внешнюю часть ]
Сложность: 3
Классы: 11

Дана замкнутая пространственная ломаная с вершинами A1, A2, ..., An, причём каждое звено пересекает фиксированную сферу в двух точках, а все вершины ломаной лежат вне сферы. Эти точки делят ломаную на 3n отрезков. Известно, что отрезки, прилегающие к вершине A1, равны между собой. То же самое верно и для вершин A2, A3, ..., An - 1. Доказать, что отрезки, прилегающие к вершине An, также равны между собой.
Прислать комментарий     Решение


Задача 110844

Темы:   [ Площадь фигуры равна сумме площадей фигур, на которые она разбита ]
[ Средние пропорциональные в прямоугольном треугольнике ]
[ Признаки и свойства касательной ]
Сложность: 3
Классы: 8,9

Окружность с центром на стороне AC равнобедренного треугольника ABC ( AB=BC ) касается сторон AB и BC , а сторону AC делит на три равные части. Найдите радиус окружности, если площадь треугольника ABC равна 9 .
Прислать комментарий     Решение


Задача 111530

Темы:   [ Вписанные и описанные окружности ]
[ Теорема Пифагора (прямая и обратная) ]
[ Две касательные, проведенные из одной точки ]
Сложность: 3
Классы: 8,9

Найдите катеты прямоугольного треугольника, если известно, что радиус описанной около треугольника окружности равен R , а радиус вписанной в него окружности равен r . При каком отношении задача имеет решение?
Прислать комментарий     Решение


Задача 111583

Темы:   [ Признаки и свойства параллелограмма ]
[ Признаки и свойства касательной ]
[ Две касательные, проведенные из одной точки ]
Сложность: 3
Классы: 8,9

В треугольник ABC с прямым углом C вписана окружность, касающаяся сторон AC , BC и AB в точках M , K и N соответственно. Через точку K провели прямую, перпендикулярную отрезку MN . Она пересекла катет AC в точке X . Докажите, что CK=AX .
Прислать комментарий     Решение


Задача 115564

Темы:   [ Окружность, вписанная в угол ]
[ Тригонометрические соотношения в прямоугольном треугольнике ]
[ Признаки и свойства касательной ]
Сложность: 3
Классы: 8,9

Один из смежных углов с вершиной A вдвое больше другого. В эти углы вписаны окружности с центрами O1 и O2 . Найдите углы треугольника O1AO2 , если отношение радиусов окружностей равно .
Прислать комментарий     Решение


Страница: << 108 109 110 111 112 113 114 >> [Всего задач: 769]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .