ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

На сферическом Солнце обнаружено конечное число круглых пятен, каждое из которых занимает меньше половины поверхности Солнца. Эти пятна предполагаются замкнутыми (т.е. граница пятна принадлежит ему) и не пересекаются между собой. Доказать, что на Солнце найдутся две диаметрально противоположные точки, не покрытые пятнами.

   Решение

Задачи

Страница: 1 2 3 4 5 6 >> [Всего задач: 26]      



Задача 35339

Темы:   [ Принцип Дирихле (площадь и объем) ]
[ Центральная симметрия ]
[ Движение помогает решить задачу ]
Сложность: 2+
Классы: 8,9,10

На планете Тау Кита суша занимает больше половины всей площади. Доказать, что таукитяне могут прорыть через центр планеты шахту, соединяющую сушу с сушей.
Прислать комментарий     Решение


Задача 32068

Темы:   [ Принцип Дирихле (площадь и объем) ]
[ Раскраски ]
Сложность: 3
Классы: 6,7,8

Квадратная площадь размером 100×100 выложена квадратными плитами 1×1 четырёх цветов: белого, красного, чёрного и серого – так, что никакие две плиты одинакового цвета не соприкасаются друг с другом (то есть не имеют общей стороны или вершины). Сколько может быть красных плит?

Прислать комментарий     Решение

Задача 58107

Темы:   [ Принцип Дирихле (площадь и объем) ]
[ Формула включения-исключения ]
[ Сочетания и размещения ]
[ Перегруппировка площадей ]
[ Доказательство от противного ]
Сложность: 3
Классы: 9,10

   а) В квадрате площади 6 расположены три многоугольника площади 3. Докажите, что среди них найдутся два многоугольника,
площадь общей части которых не меньше 1.
   б) В квадрате площади 5 расположено девять многоугольников площади 1. Докажите, что среди них найдутся два многоугольника,
площадь общей части которых не меньше 1/9.

Прислать комментарий     Решение

Задача 65155

Тема:   [ Принцип Дирихле (площадь и объем) ]
Сложность: 3+
Классы: 9,10,11

Ковёр имеет форму квадрата со стороной 275 см. Моль проела в нем четыре дырки. Можно ли гарантированно вырезать из ковра квадратный кусок со стороной 1 м, не содержащий дырок? Дырки считайте точечными.

Прислать комментарий     Решение

Задача 79322

Темы:   [ Принцип Дирихле (площадь и объем) ]
[ Центральная симметрия помогает решить задачу ]
[ Наименьшее или наибольшее расстояние (длина) ]
[ Окружности на сфере ]
Сложность: 4-
Классы: 9,10,11

На сферическом Солнце обнаружено конечное число круглых пятен, каждое из которых занимает меньше половины поверхности Солнца. Эти пятна предполагаются замкнутыми (т.е. граница пятна принадлежит ему) и не пересекаются между собой. Доказать, что на Солнце найдутся две диаметрально противоположные точки, не покрытые пятнами.
Прислать комментарий     Решение


Страница: 1 2 3 4 5 6 >> [Всего задач: 26]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .