Страница:
<< 124 125 126 127
128 129 130 >> [Всего задач: 1308]
|
|
Сложность: 4- Классы: 10,11
|
Имеется бесконечное количество карточек, на каждой из которых написано какое-то
натуральное число. Известно, что для любого натурального числа n существуют
ровно n карточек, на которых написаны делители этого числа. Доказать, что
каждое натуральное число встречается хотя бы на одной карточке.
|
|
Сложность: 4- Классы: 8,9,10
|
Двое играют в следующую игру: имеется две кучи конфет. Играющие делают ход по
очереди. Ход состоит в том, что играющий съедает одну из куч, а другую делит на
две (равные или неравные) части. Если он не может разделить кучу, так как там
всего одна конфета, то он её съедает и выигрывает. Вначале в кучах было 33 и
35 конфет. Кто выиграет, начинающий или его партнер, и как для этого надо
играть?
|
|
Сложность: 4- Классы: 9,10,11
|
Можно ли разбить все целые неотрицательные числа на 1968 непустых классов так, чтобы в каждом классе было хотя бы одно число и выполнялось бы следующее условие:
если число m получается из числа n вычёркиванием двух рядом стоящих цифр или одинаковых групп цифр, то и m, и n принадлежат одному классу (например, числа 7, 9339337, 93223393447, 932239447 принадлежат одному классу)?
|
|
Сложность: 4- Классы: 10,11
|
Коля и Витя играют в следующую игру. На столе лежит куча из 100 камней. Мальчики
делают ходы поочерёдно, а начинает Коля. Делая ход, играющий делит каждую
кучку, в которой больше одного камня, на две меньшие кучки. Выигрывает тот, кто
после своего хода оставляет кучки по одному камню в каждой. Сможет ли Коля
сделать так, чтобы выиграть при любой игре Вити?
Имеется 5 гирь. Их массы равны 1000 г, 1001 г, 1002 г, 1004 г и 1007 г, но
надписей на гирях нет и внешне они неотличимы. Имеются весы со стрелкой,
которые показывают массу в граммах. Как с помощью трёх взвешиваний определить
гирю в 1000 г?
Страница:
<< 124 125 126 127
128 129 130 >> [Всего задач: 1308]