ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Квадрат расчерчен на 16 равных клеток. Каждую из букв A, B, C, D расставьте в этих клетках по четыре раза таким образом, чтобы на каждой горизонтали, каждой вертикали и двух больших диагоналях не было одинаковых букв.

   Решение

Задачи

Страница: << 10 11 12 13 14 15 16 >> [Всего задач: 536]      



Задача 78238

Темы:   [ Числовые таблицы и их свойства ]
[ Примеры и контрпримеры. Конструкции ]
[ Разбиения на пары и группы; биекции ]
Сложность: 3
Классы: 8,9

Доказать, что если n чётно, то числа 1, 2, 3, ..., n² можно таким образом расположить в квадратную таблицу n×n, чтобы суммы чисел, стоящих в каждом столбце, были одинаковы.

Прислать комментарий     Решение

Задача 78651

Темы:   [ Числовые таблицы и их свойства ]
[ Примеры и контрпримеры. Конструкции ]
[ Разбиения на пары и группы; биекции ]
Сложность: 3
Классы: 7,8,9,10

Расставить в таблице 4×4 16 чисел так, чтобы сумма чисел по любой вертикали, горизонтали и диагонали равнялась нулю. (Таблица имеет 14 диагоналей, включая все малые, состоящие из трёх, двух и одной клеток. Хотя бы одно из чисел должно быть отлично от нуля.)

Прислать комментарий     Решение

Задача 79543

Темы:   [ Таблицы и турниры (прочее) ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 3
Классы: 8

Квадрат расчерчен на 16 равных клеток. Каждую из букв A, B, C, D расставьте в этих клетках по четыре раза таким образом, чтобы на каждой горизонтали, каждой вертикали и двух больших диагоналях не было одинаковых букв.

Прислать комментарий     Решение

Задача 79611

Темы:   [ Турниры и турнирные таблицы ]
[ Подсчет двумя способами ]
Сложность: 3
Классы: 8,9

Каждый участник шахматных соревнований выиграл белыми столько же партий, сколько все остальные вместе взятые – чёрными.
Докажите, что все участники выиграли поровну партий.

Прислать комментарий     Решение

Задача 88118

Тема:   [ Турниры и турнирные таблицы ]
Сложность: 3
Классы: 6,7,8

В турнире участвовали пять шахматистов. Известно, что каждый сыграл с остальными по одной партии и все набрали разное количество очков; занявший первое место не сделал ни одной ничьей; занявший второе место не проиграл ни одной партии; занявший четвёртое место не выиграл ни одной партии. Определите результаты всех партий турнира.

Прислать комментарий     Решение

Страница: << 10 11 12 13 14 15 16 >> [Всего задач: 536]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .