ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Тема:
Все темы
>>
Геометрия
>>
Планиметрия
>>
Геометрические неравенства
>>
Неравенство треугольника
Подтемы:
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Все значения квадратного трёхчлена ax² + bx + c на отрезке [0, 1] по модулю не превосходят 1. |
Страница: << 47 48 49 50 51 52 53 >> [Всего задач: 289]
В выпуклом четырёхугольнике ABCD некоторая точка диагонали АС принадлежит серединным перпендикулярам к сторонам АВ и CD, а некоторая точка диагонали BD принадлежит серединным перпендикулярам к сторонам AD и ВС. Докажите, что ABCD – прямоугольник.
Все значения квадратного трёхчлена ax² + bx + c на отрезке [0, 1] по модулю не превосходят 1.
На основании BC трапеции ABCD взята точка E, лежащая на одной окружности с точками A, C и D. Другая окружность, проходящая через точки A, B и C, касается прямой CD. Найдите BC, если AB = 12 и BE : EC = 4 : 5. Найдите все возможные значения отношения радиуса первой окружности к радиусу второй при данных условиях.
Трапеция ABCD вписана в окружность. Другая окружность, проходящая через точки A и C, касается прямой CD и пересекает в точке E продолжение основания BC = 7 за точку B. Найдите BE, если AE = 12. Найдите все возможные значения отношения радиуса первой окружности к радиусу второй при данных условиях.
В треугольнике ABC ∠A = 57<°, ∠B = 61°, ∠C = 62°. Какой из двух отрезков длиннее: биссектриса угла A или медиана, проведённая из вершины B?
Страница: << 47 48 49 50 51 52 53 >> [Всего задач: 289] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|