ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Можно ли n раз рассадить  2n + 1  человека за круглым столом так, чтобы никакие двое не сидели рядом более одного раза, если  а)  n = 5;  б)  n = 10?

   Решение

Задачи

Страница: << 64 65 66 67 68 69 70 >> [Всего задач: 1006]      



Задача 79616

Темы:   [ Обход графов ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 4+
Классы: 9

Можно ли n раз рассадить  2n + 1  человека за круглым столом так, чтобы никакие двое не сидели рядом более одного раза, если  а)  n = 5;  б)  n = 10?

Прислать комментарий     Решение

Задача 98365

Темы:   [ Деревья ]
[ Раскраски ]
[ Куб ]
[ Доказательство от противного ]
[ Перебор случаев ]
Сложность: 4+
Классы: 9,10

Раскрашенный в чёрный и белый цвета кубик с гранью в одну клетку поставили на одну из клеток шахматной доски и прокатили по ней так, что кубик побывал на каждой клетке ровно по одному разу. Можно ли так раскрасить кубик и так прокатить его по доске, чтобы каждый раз цвета клетки и соприкоснувшейся с ней грани совпадали?
Прислать комментарий     Решение


Задача 105069

Темы:   [ Обход графов ]
[ Раскраски ]
[ Процессы и операции ]
Сложность: 4+
Классы: 8,9,10,11

Раскраска вершин графа называется правильной, если вершины одного цвета не соединены ребром. Некоторый граф правильно раскрашен в k цветов, причём его нельзя правильно раскрасить в меньшее число цветов. Докажите, что в этом графе существует путь, вдоль которого встречаются вершины всех k цветов ровно по одному разу.

Прислать комментарий     Решение

Задача 109791

Темы:   [ Обход графов ]
[ Раскраски ]
[ Индукция (прочее) ]
Сложность: 4+
Классы: 8,9,10

В стране n городов. Между каждыми двумя из них проложена либо автомобильная, либо железная дорога. Турист хочет объехать страну, побывав в каждом городе ровно один раз, и вернуться в город, с которого он начинал путешествие. Докажите, что турист может выбрать город, с которого он начнет путешествие, и маршрут так, что ему придётся поменять вид транспорта не более одного раза.

Прислать комментарий     Решение

Задача 110177

Темы:   [ Задачи с ограничениями ]
[ Десятичная система счисления ]
[ Иррациональные неравенства ]
Сложность: 4+
Классы: 9,10,11

Каких точных квадратов, не превосходящих 1020, больше: тех, у которых семнадцатая с конца цифра – 7, или тех, у которых семнадцатая с конца цифра – 8?

Прислать комментарий     Решение

Страница: << 64 65 66 67 68 69 70 >> [Всего задач: 1006]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .