Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 8 задач
Версия для печати
Убрать все задачи

Среднее арифметическое десяти различных натуральных чисел равно 15. Найдите наибольшее значение наибольшего из этих чисел.

Вниз   Решение


Малая теорема Ферма. Пусть p – простое число и p не делит a. Тогда  ap–1 ≡ 1 (mod p).
Докажите теорему Ферма, разлагая  (1 + 1 + ... + 1)p  посредством полиномиальной теоремы (см. задачу 60400).

ВверхВниз   Решение


а) У Полины есть волшебная шоколадка в форме клетчатой лесенки со стороной 10 (см. рисунок), в каждой дольке своя начинка. Каждую минуту Полина отламывает верхний ряд долек шоколадки, поворачивает его на 90 градусов против часовой стрелки и приставляет её к оставшейся части в виде столбца слева, как показано на рисунке (после этого столбец слипается с другой частью, и снова получается цельная лесенка). Как только каждая долька вернётся на то же место, в котором она была изначально, Полина съест всю шоколадку. Через сколько минут это произойдёт?

Как только каждая долька вернётся на то же место, в котором она была изначально, Саша съест шоколадку. Через сколько минут это произойдёт?

б) У Саши есть такая же волшебная шоколадка. Он каждую минуту отламывает верхний ряд долек шоколадки, поворачивает его на 90 градусов по часовой стрелке и приставляет её к оставшейся части в виде столбца слева, как показано на рисунке.

ВверхВниз   Решение


Точка D лежит на стороне BC треугольника ABC, а точка O расположена на отрезке AD, причём  AO : OD = 9 : 4.  Прямая, проходящая через вершину B и точку O, пересекает сторону AC в точке E, причём  BO : OE = 5 : 6.  Найдите отношение, в котором точка E делит сторону AC.

ВверхВниз   Решение


Сумма пяти чисел равна 200. Докажите, что их произведение не может оканчиваться на 1999.

ВверхВниз   Решение


Три стороны четырёхугольника в порядке обхода равны 7, 1 и 4.
Найдите четвёртую сторону этого четырёхугольника, если известно, что его диагонали перпендикулярны.

ВверхВниз   Решение


Около треугольника ABC описана окружность. Диаметр AD пересекает сторону BC в точке E, при этом AE = AC и BE : CE = m. Найдите отношение DE к AE.

ВверхВниз   Решение


В правильной треугольной пирамиде ABCP с вершиной P сторона основания равна 2. Через сторону основания BC проведено сечение, которое пересекает ребро PA в точке M , причём PM:MA = 1:3 , а площадь сечения равна 3. Найдите высоту пирамиды.

Вверх   Решение

Задачи

Страница: << 32 33 34 35 36 37 38 >> [Всего задач: 337]      



Задача 115375

Темы:   [ Наглядная геометрия в пространстве ]
[ Свойства разверток ]
Сложность: 2+
Классы: 5,6,7

Поросёнок Наф-Наф придумал, как сложить параллелепипед из одинаковых кубиков и оклеить его тремя квадратами без щелей и наложений. Сделайте это и вы.
Прислать комментарий     Решение


Задача 64930

Темы:   [ Замощения костями домино и плитками ]
[ Развертка помогает решить задачу ]
Сложность: 3
Классы: 5,6

Полина решила раскрасить свой клетчатый браслет размером 10×2 (рис. слева) волшебным узором из одинаковых фигурок (рис. справа), чередуя в них два цвета. Помогите ей это сделать.

Прислать комментарий     Решение

Задача 86912

Темы:   [ Линейные зависимости векторов ]
[ Свойства сечений ]
Сложность: 3
Классы: 8,9

Высота правильной четырёхугольной пирамиды равна 8, апофема пирамиды равна 10. Найдите площадь сечения пирамиды плоскостью, проведённой через середину высоты параллельно плоскости основания.
Прислать комментарий     Решение


Задача 86914

Темы:   [ Линейные зависимости векторов ]
[ Свойства сечений ]
Сложность: 3
Классы: 8,9

Сторона основания правильной четырёхугольной пирамиды равна 8, а высота равна 3. Найдите площадь сечения пирамиды плоскостью, проходящей через одну из сторон основания и середину противоположного бокового ребра.
Прислать комментарий     Решение


Задача 86920

Темы:   [ Линейные зависимости векторов ]
[ Свойства сечений ]
Сложность: 3
Классы: 8,9

В правильной треугольной пирамиде ABCP с вершиной P сторона основания равна 2. Через сторону основания BC проведено сечение, которое пересекает ребро PA в точке M , причём PM:MA = 1:3 , а площадь сечения равна 3. Найдите высоту пирамиды.
Прислать комментарий     Решение


Страница: << 32 33 34 35 36 37 38 >> [Всего задач: 337]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .