ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи
Докажите, что площадь треугольника равна его полупериметру, умноженному на радиус вписанной окружности.
Сумма сторон AB и BC треугольника ABC равна 11, угол B равен 60°, радиус вписанной окружности равен
Решите уравнение
sin4x + cos4x = a.
Докажите неравенство: 2n > n. Две окружности пересекаются в точках А и В. Через точку В проведена прямая, пересекающая окружности в точках М и N так, что АВ – биссектриса треугольника МАN. Докажите, что отношение отрезков ВМ и BN равно отношению радиусов окружностей. Рита, Люба и Варя решали задачи. Чтобы дело шло быстрее, они купили конфет и условились, что за каждую решённую задачу девочка, решившая её первой, получает четыре конфеты, решившая второй — две, а решившая последней — одну. Девочки говорят, что каждая из них решила все задачи и получила 20 конфет, причём одновременных решений не было. Они ошибаются. Как вы думаете, почему?
Даны три попарно перпендикулярные прямые. Четвёртая прямая
образует с данными углы α , β , γ соответственно.
Докажите, что
|
Страница: 1 2 3 4 5 >> [Всего задач: 22]
На диагоналях D1A , A1B , B1C , C1D граней
куба ABCDA1B1C1D1 взяты соответственно точки M ,
N , P , Q , причём
а прямые MN и PQ взаимно перпендикулярны. Найдите μ .
Даны три некомпланарных вектора. Существует ли четвёртый ненулевой вектор, перпендикулярный трём данным?
Четырёхугольная пирамида SABCD вписана в сферу. Основание этой
пирамиды – прямоугольник ABCD . Известно, что AS = 7 , BS = 2 ,
CS =6 ,
Даны три попарно перпендикулярные прямые. Четвёртая прямая
образует с данными углы α , β , γ соответственно.
Докажите, что
Каждое ребро треугольной пирамиды PABC равно 1; BD – высота треугольника ABC . Равносторонний треугольник BDE лежит в плоскости, образующей угол ϕ с ребром AC , причём точки P и E лежат по одну сторону от плоскости ABC . Найдите расстояние между точками P и E .
Страница: 1 2 3 4 5 >> [Всего задач: 22]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке