ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 6 задач
Версия для печати
Убрать все задачи

Докажите, что для любого натурального N существует N точек, никакие три из которых не лежат на одной прямой и все попарные расстояния между которыми являются целыми числами.

Вниз   Решение


Даны две окружности S1, S2 и прямая l. Проведите прямую l1, параллельную прямой l, так, чтобы:
а) расстояние между точками пересечения l1 с окружностями S1 и S2 имело заданную величину a;
б) S1 и S2 высекали на l1 равные хорды;
в) S1 и S2 высекали на l1 хорды, сумма (или разность) длин которых имела бы заданную величину a.

ВверхВниз   Решение


Автор: Шень А.Х.

Будем называть "размером" прямоугольного параллелепипеда сумму трёх его измерений – длины, ширины и высоты.
Может ли случиться, что в некотором прямоугольном параллелепипеде поместился больший по размеру прямоугольный параллелепипед?

ВверхВниз   Решение


Прямая l касается вневписанной окружности треугольника ABC, касающейся стороны BC. Пусть $ \delta_{a}^{}$, $ \delta_{b}^{}$, $ \delta_{c}^{}$ — расстояния от прямой l до точек A, B, C с учетом знака (расстояние положительно, если точка и центр вневписанной окружности лежат по одну сторону от прямой l; в противном случае расстояние отрциательно). Докажите, что - a$ \delta_{a}^{}$ + b$ \delta_{b}^{}$ + c$ \delta_{c}^{}$ = 2SABC.

ВверхВниз   Решение


Каждое из рёбер полного графа с 6 вершинами покрашено в один из двух цветов.
Докажите, что есть три вершины, все рёбра между которыми – одного цвета.

ВверхВниз   Решение


Пусть a , b и c – стороны параллелепипеда, d – одна из его диагоналей. Докажите, что a2 + b2 + c2 d2 .

Вверх   Решение

Задачи

Страница: 1 2 3 4 >> [Всего задач: 16]      



Задача 87102

Темы:   [ Длины и периметры (геометрические неравенства) ]
[ Куб ]
Сложность: 3
Классы: 8,9

Дан куб с ребром 1. Докажите, что сумма расстояний от произвольной точки до его вершин не меньше 4 .
Прислать комментарий     Решение


Задача 87103

Темы:   [ Длины и периметры (геометрические неравенства) ]
[ Параллелепипеды ]
Сложность: 3
Классы: 8,9

Пусть a , b и c – стороны параллелепипеда, d – одна из его диагоналей. Докажите, что a2 + b2 + c2 d2 .
Прислать комментарий     Решение


Задача 87105

Темы:   [ Длины и периметры (геометрические неравенства) ]
[ Неравенство треугольника (прочее) ]
Сложность: 3
Классы: 8,9

В пространстве рассматриваются два отрезка AB и CD , не лежащие в одной плоскости. Пусть M и K – их середины. Докажите, что MK < (AD + BC) .
Прислать комментарий     Решение


Задача 64319

 [Неравенство Птолемея]
Темы:   [ Длины и периметры (геометрические неравенства) ]
[ Теорема Птолемея ]
[ Классические неравенства (прочее) ]
Сложность: 4-
Классы: 10,11

Автор: Фольклор

Докажите, что для любых четырёх точек A, B, C, D, не лежащих в одной плоскости, выполнено неравенство  AB·CD + AC·BD > AD·BC.

Прислать комментарий     Решение

Задача 98420

 [Багаж в Московском метрополитене]
Темы:   [ Длины и периметры (геометрические неравенства) ]
[ Прямоугольные параллелепипеды ]
[ Проектирование помогает решить задачу ]
[ Боковая поверхность параллелепипеда ]
[ Векторы помогают решить задачу ]
Сложность: 4
Классы: 10,11

Автор: Шень А.Х.

Будем называть "размером" прямоугольного параллелепипеда сумму трёх его измерений – длины, ширины и высоты.
Может ли случиться, что в некотором прямоугольном параллелепипеде поместился больший по размеру прямоугольный параллелепипед?

Прислать комментарий     Решение

Страница: 1 2 3 4 >> [Всего задач: 16]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .