Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 4 задачи
Версия для печати
Убрать все задачи

Дана прямоугольная трапеция ABCD, в которой  ∠C = ∠B = 90°.  На стороне AD как на диаметре построена окружность, которая пересекает сторону BC в точках M и N. Докажите, что  BM·MC = AB·CD.

Вниз   Решение


Вершина угла величиной 70° служит началом луча, образующего с его сторонами углы 30° и 40°. Из некоторой точки M на этот луч и на стороны угла опущены перпендикуляры, основания которых – A, B и C. Найдите углы треугольника ABC.

ВверхВниз   Решение


Правильную четырёхугольную пирамиду PKLMN с вершиной P пересекает плоскость, проходящая через вершину основания L и перпендикулярная ребру PN . Площадь получившегося сечения в три раза меньше площади основания пирамиды. Найдите отношение отрезка PK к высоте пирамиды.

ВверхВниз   Решение


В правильной четырёхугольной пирамиде расположены два одинаковых шара радиуса r , касающиеся основания пирамиды в точках, принадлежащих отрезку, соединяющему середины противоположных сторон основания. Каждый из шаров касается боковой грани пирамиды и другого шара. Найдите высоту пирамиды, при которой объём пирамиды наименьший.

Вверх   Решение

Задачи

Страница: << 5 6 7 8 9 10 11 >> [Всего задач: 127]      



Задача 87069

Темы:   [ Кратчайший путь по поверхности ]
[ Развертка помогает решить задачу ]
[ Куб ]
Сложность: 4
Классы: 8,9

Дан куб ABCDA1B1C1D1 с ребром 4. На середине ребра BC взята точка M , а на ребре A1D1 на расстоянии 1 от вершины A1 взята точка N . Найдите длину кратчайшего пути между точками M и N по поверхности куба.
Прислать комментарий     Решение


Задача 87096

Темы:   [ Площадь и объем (задачи на экстремум) ]
[ Конус ]
Сложность: 4
Классы: 8,9

В конусе расположены два одинаковых шара радиуса r , касающиеся основания конуса в точках, симметричных относительно центра основания. Каждый из шаров касается боковой поверхности конуса и другого шара. Найдите угол между образующей конуса и основанием, при которой объём конуса наименьший.
Прислать комментарий     Решение


Задача 87128

Темы:   [ Максимальное/минимальное расстояние ]
[ Правильная призма ]
Сложность: 4
Классы: 8,9

Сторона основания ABCD правильной призмы ABCDA1B1C1D1 равна 2a , боковое ребро – a . Рассматриваются отрезки с концами на диагонали AD1 грани AA1D1D и диагонали DB1 призмы, параллельные плоскости AA1B1B . а) Один из таких отрезков проведён через точку M диагонали AD1 , для которой AM:AD1 = 2:3 . Найдите его длину. б) Найдите наименьшую длину всех рассматриваемых отрезков.
Прислать комментарий     Решение


Задача 87221

Темы:   [ Площадь и объем (задачи на экстремум) ]
[ Касающиеся сферы ]
Сложность: 4
Классы: 8,9

В правильной четырёхугольной пирамиде расположены два одинаковых шара радиуса r , касающиеся основания пирамиды в точках, принадлежащих отрезку, соединяющему середины противоположных сторон основания. Каждый из шаров касается боковой грани пирамиды и другого шара. Найдите высоту пирамиды, при которой объём пирамиды наименьший.
Прислать комментарий     Решение


Задача 87222

Темы:   [ Площадь и объем (задачи на экстремум) ]
[ Конус ]
Сложность: 4
Классы: 8,9

В конусе расположены два шара единичного радиуса, центры которых находятся на оси симметрии конуса. Один из шаров касается боковой поверхности конуса, а другой – основания конуса и первого шара. Найдите угол между образующей конуса и основанием, при котором объём конуса наименьший.
Прислать комментарий     Решение


Страница: << 5 6 7 8 9 10 11 >> [Всего задач: 127]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .