ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 11 задач
Версия для печати
Убрать все задачи

Одним пакетиком чая можно заварить два или три стакана чая. Мила и Таня разделили коробку чайных пакетиков поровну. Мила заварила 57 стаканов чая, а Таня – 83 стакана. Сколько пакетиков могло быть в коробке?

Вниз   Решение


Можно ли представить число в виде суммы квадратов двух натуральных чисел?

ВверхВниз   Решение


Сумма четырех единичных векторов равна нулю. Докажите, что их можно разбить на две пары противоположных векторов.

ВверхВниз   Решение


Существует ли выпуклый четырёхугольник, у которого сумма длин диагоналей не меньше периметра?

ВверхВниз   Решение


Докажите, что геометрическая прогрессия {an} = bx0n удовлетворяет соотношению (11.2 ) тогда и только тогда, когда x0 -- корень характеристического уравнения (11.3 ) последовательности {an}.

ВверхВниз   Решение


С помощью циркуля и линейки постройте параллелограмм по основанию, высоте и углу между диагоналями.

ВверхВниз   Решение


Попробуйте найти все натуральные числа, которые больше своей последней цифры в 5 раз.

ВверхВниз   Решение


Автор: Шноль Д.Э.

Каждая из функций $f(x)$ и $g(x)$ определена на всей числовой прямой и не является строго монотонной. Может ли быть, что и их сумма, и их разность строго монотонны на всей числовой прямой?

ВверхВниз   Решение


Диагонали вписанного четырехугольника ABCD пересекаются в точке K.
Докажите, что касательная в точке K к описанной окружности треугольника ABK, параллельна CD.

ВверхВниз   Решение


Сколько существует натуральных чисел, меньших тысячи, которые не делятся ни на 5, ни на 7?

ВверхВниз   Решение



Сфера радиуса 3/2 имеет центр в точке N. Из точки K, находящейся на расстоянии 3$ \sqrt{5}$/2 от центра сферы, проведены две прямые KL и KM, касающиеся сферы в точках L и M соответственно. Найдите объем пирамиды KLMN, если известно, что ML = 2.

Вверх   Решение

Задачи

Страница: 1 2 >> [Всего задач: 7]      



Задача 87046

Тема:   [ Геометрия (прочее) ]
Сложность: 2
Классы: 10,11


Пусть M - точка пересечения медиан треугольника ABC, O - произвольная точка пространства. Докажите, что

OM2 = $\displaystyle {\textstyle\frac{1}{3}}$(OA2 + OB2 + OC2) - $\displaystyle {\textstyle\frac{1}{9}}$(AB2 + BC2 + AC2).

Прислать комментарий     Решение

Задача 87048

Тема:   [ Геометрия (прочее) ]
Сложность: 2
Классы: 10,11


Даны три некомпланарных вектора. Существует ли четвертый вектор, перпендикулярный трем данным?

Прислать комментарий     Решение


Задача 87266

Тема:   [ Геометрия (прочее) ]
Сложность: 2
Классы: 10,11


Найдите объем наклонной треугольной призмы, основанием которой служит равносторонний треугольник со стороной, равной a, если боковое ребро призмы равно стороне основания и наклонено к плоскости основания под углом 60o.

Прислать комментарий     Решение


Задача 87364

Тема:   [ Геометрия (прочее) ]
Сложность: 3+
Классы: 10,11


Сфера радиуса $ \sqrt{5}$ с центром в точке O касается всех сторон треугольника ABC. Точка касания N делит сторону AB пополам. Точка касания M делит сторону AC так, что AM = $ {\frac{1}{2}}$MC. Найдите объем пирамиды OABC, если известно, что AN = NB = 1.

Прислать комментарий     Решение


Задача 87366

Тема:   [ Геометрия (прочее) ]
Сложность: 3+
Классы: 10,11


Сфера радиуса 3/2 имеет центр в точке N. Из точки K, находящейся на расстоянии 3$ \sqrt{5}$/2 от центра сферы, проведены две прямые KL и KM, касающиеся сферы в точках L и M соответственно. Найдите объем пирамиды KLMN, если известно, что ML = 2.

Прислать комментарий     Решение


Страница: 1 2 >> [Всего задач: 7]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .