ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

а) Покажите, что среди любых шести целых чисел найдутся два, разность которых кратна 5.
б) Останется ли это утверждение верным, если вместо разности взять сумму?

   Решение

Задачи

Страница: << 12 13 14 15 16 17 18 >> [Всего задач: 188]      



Задача 107998

Темы:   [ Деление с остатком ]
[ Индукция (прочее) ]
[ Монотонность и ограниченность ]
Сложность: 5-
Классы: 9,10,11

В ящиках лежат камни. За один ход выбирается число k, затем камни в ящиках делятся на группы по k штук и остаток менее, чем из k штук. Оставляют по одному камню из каждой группы и весь остаток. Можно ли за пять ходов добиться, чтобы в ящиках осталось ровно по одному камню, если в каждом из них
  а) не более 460 камней;
  б) не более 461 камня?
Прислать комментарий     Решение


Задача 66590

Темы:   [ Деление с остатком ]
[ Алгоритм Евклида ]
Сложность: 5
Классы: 9,10,11

Автор: Белухов Н.

Пусть $p$ и $q$ – взаимно простые натуральные числа. Лягушка прыгает по числовой прямой, начиная в точке $0$, каждый раз либо на $p$ вправо, либо на $q$ влево. Однажды лягушка вернулась в $0$. Докажите, что для любого натурального $d < p + q$ найдутся два числа, посещенные лягушкой и отличающиеся на $d$.
Прислать комментарий     Решение


Задача 88242

Темы:   [ Простые числа и их свойства ]
[ Деление с остатком ]
Сложность: 2-
Классы: 5,6,7

Докажите, что любое простое число, большее 3, можно записать в одном из двух видов:  6n + 1  либо  6n – 1,  где n – натуральное число.

Прислать комментарий     Решение

Задача 88072

Темы:   [ Принцип Дирихле (прочее) ]
[ Деление с остатком ]
Сложность: 2
Классы: 6,7,8

а) Покажите, что среди любых шести целых чисел найдутся два, разность которых кратна 5.
б) Останется ли это утверждение верным, если вместо разности взять сумму?

Прислать комментарий     Решение

Задача 88140

Темы:   [ Числовые таблицы и их свойства ]
[ Деление с остатком ]
[ Примеры и контрпримеры. Конструкции ]
[ Шахматная раскраска ]
Сложность: 2
Классы: 5,6,7

Даны 16 чисел: 1, 11, 21, 31 и т.д. (каждое следующее на 10 больше предыдущего).
Можно ли расставить их в таблице 4×4 так, чтобы разность каждых двух чисел, стоящих в соседних по стороне клетках, не делилась на 4?

Прислать комментарий     Решение

Страница: << 12 13 14 15 16 17 18 >> [Всего задач: 188]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .