Страница:
<< 12 13 14 15
16 17 18 >> [Всего задач: 188]
|
|
Сложность: 5- Классы: 9,10,11
|
В ящиках лежат камни. За один ход выбирается число k, затем камни в ящиках делятся на группы по k штук и остаток менее, чем из k штук. Оставляют по одному камню из каждой группы и весь остаток. Можно ли за пять ходов добиться, чтобы в ящиках осталось ровно по одному камню, если в каждом из них
а) не более 460 камней;
б) не более 461 камня?
|
|
Сложность: 5 Классы: 9,10,11
|
Пусть $p$ и $q$ – взаимно простые натуральные числа. Лягушка прыгает по числовой прямой, начиная в точке $0$, каждый раз либо на $p$ вправо, либо на $q$ влево. Однажды лягушка вернулась в $0$. Докажите, что для любого натурального $d < p + q$ найдутся два числа, посещенные лягушкой и отличающиеся на $d$.
|
|
Сложность: 2- Классы: 5,6,7
|
Докажите, что любое простое число, большее 3, можно записать в одном из двух видов: 6n + 1 либо 6n – 1, где n – натуральное число.
|
|
Сложность: 2 Классы: 6,7,8
|
а) Покажите, что среди любых шести целых чисел найдутся два, разность которых
кратна 5.
б) Останется ли это утверждение верным, если вместо разности
взять сумму?
|
|
Сложность: 2 Классы: 5,6,7
|
Даны 16 чисел: 1, 11, 21, 31 и т.д. (каждое следующее на 10 больше предыдущего).
Можно ли расставить их в таблице 4×4 так, чтобы разность каждых двух чисел, стоящих в соседних по стороне клетках, не делилась на 4?
Страница:
<< 12 13 14 15
16 17 18 >> [Всего задач: 188]