ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Докажите для каждого натурального числа  n > 1  равенство:   [n1/2] + [n1/3] + ... + [n1/n] = [log2n] + [log3n] + ... + [lognn].

   Решение

Задачи

Страница: << 18 19 20 21 22 23 24 >> [Всего задач: 416]      



Задача 79595

Темы:   [ Характеристические свойства и рекуррентные соотношения ]
[ Системы линейных уравнений ]
Сложность: 4
Классы: 9,10,11

Функция f (x) при каждом значении  x ∈ (− ∞, + ∞)  удовлетворяет равенству  f(x) + (x + ½)f(1 − x) = 1.
  а) Найдите f(0) и f(1).
  б) Найдите все такие функции f(x).

Прислать комментарий     Решение

Задача 97790

Темы:   [ Целая и дробная части. Принцип Архимеда ]
[ Подсчет двумя способами ]
[ Показательные функции и логарифмы (прочее) ]
[ Раскладки и разбиения ]
Сложность: 4
Классы: 10,11

Докажите для каждого натурального числа  n > 1  равенство:   [n1/2] + [n1/3] + ... + [n1/n] = [log2n] + [log3n] + ... + [lognn].

Прислать комментарий     Решение

Задача 97817

Темы:   [ Ограниченность, монотонность ]
[ Последовательности (прочее) ]
Сложность: 4
Классы: 9,10

Автор: Анджанс А.

a1, a2, a3, ...  – возрастающая последовательность натуральных чисел. Известно, что  aak = 3k  для любого k.
Найти   а)  a100;   б)  a1983.

Прислать комментарий     Решение

Задача 98155

Темы:   [ Монотонность, ограниченность ]
[ Показательные функции и логарифмы (прочее) ]
Сложность: 4
Классы: 10,11

Функция  f(x) на отрезке [a, b] равна максимуму из нескольких функций вида y = C·10–|x–d| (с различными d и C, причём все C положительны). Дано, что
f(a) = f(b). Докажите, что сумма длин участков, на которых функция возрастает, равна сумме длин участков, на которых функция убывает.

Прислать комментарий     Решение

Задача 102995

Темы:   [ Характеристические свойства и рекуррентные соотношения ]
[ Доказательство от противного ]
[ Примеры и контрпримеры. Конструкции ]
[ Индукция (прочее) ]
Сложность: 4
Классы: 9,10,11

Автор: Стунжас Л.

Существуют ли такие две функции  f и g, принимающие только целые значения, что для любого целого x выполнены соотношения:
  а)  f(f(x)) = x,  g(g(x)) = x,   f(g(x)) > x,  g(f(x)) > x?
  б)  f(f(x)) < x, g(g(x)) < x,   f(g(x)) > x,  g(f(x)) > x?

Прислать комментарий     Решение

Страница: << 18 19 20 21 22 23 24 >> [Всего задач: 416]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .