ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 17 18 19 20 21 22 23 >> [Всего задач: 420]      



Задача 64767

Темы:   [ Рациональные и иррациональные числа ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 4
Классы: 8,9,10

В республике математиков выбрали число  α > 2  и выпустили монеты достоинствами в 1 рубль, а также в αk рублей при каждом натуральном k. При этом α было выбрано так, что достоинства всех монет, кроме самой мелкой, иррациональны. Могло ли оказаться, что любую сумму в натуральное число рублей можно набрать этими монетами, используя монеты каждого достоинства не более 6 раз?

Прислать комментарий     Решение

Задача 66474

Темы:   [ Целая и дробная части. Принцип Архимеда ]
[ Алгебраические неравенства (прочее) ]
[ Алгебраические уравнения и системы уравнений (прочее) ]
Сложность: 4
Классы: 8,9,10,11

Докажите, что для любых натуральных a1, a2, ..., ak таких, что , у уравнения не больше чем a1a2...ak решений в натуральных числах. ([x] – целая часть числа x, т. е. наибольшее целое число, не превосходящее x.)
Прислать комментарий     Решение


Задача 66573

Темы:   [ Числовые последовательности (прочее) ]
[ Теория чисел. Делимость (прочее) ]
Сложность: 4
Классы: 9,10,11

На доске написаны $2n$ последовательных целых чисел. За ход можно разбить написанные числа на пары произвольным образом и каждую пару чисел заменить на сумму и разность чисел этой пары (не обязательно вычитать из большего числа меньшее; все замены происходят одновременно). Докажите, что на доске больше никогда не появятся $2n$ последовательных чисел.
Прислать комментарий     Решение


Задача 66837

Темы:   [ Числовые последовательности (прочее) ]
[ Числовые неравенства. Сравнения чисел. ]
Сложность: 4
Классы: 8,9,10,11

Дана возрастающая последовательность положительных чисел  $...< a_{-2} < a_{-1} < a_{0} < a_{1} < a_{2} < ...,$  бесконечная в обе стороны. Пусть $b_k$ – наименьшее целое число со свойством: отношение суммы любых $k$ подряд идущих членов данной последовательности к наибольшему из этих $k$ членов не превышает $b_k$. Докажите, что последовательность $b_{1}, b_{2}, b_{3}$, ... либо совпадает с натуральным рядом 1, 2, 3, ..., либо с некоторого момента постоянна.

Прислать комментарий     Решение

Задача 67053

Темы:   [ Целая и дробная части. Принцип Архимеда ]
[ Алгебраические неравенства (прочее) ]
Сложность: 4
Классы: 8,9,10,11

Автор: Дидин М.

Докажите для любых натуральных чисел $a_1, a_2, ..., a_n$ неравенство  $\bigg\lfloor\frac{a_1^2}{a_2}\bigg\rfloor + \bigg\lfloor\frac{a_2^2}{a_3}\bigg\rfloor + ... + \bigg\lfloor\frac{a_n^2}{a_1}\bigg\rfloor \geqslant a_1 + a_2 + ... +a_n$.  ([$x$] – целая часть числа $x$.)

Прислать комментарий     Решение

Страница: << 17 18 19 20 21 22 23 >> [Всего задач: 420]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .