ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Автор: Рубин А.

Три шахматиста A, B и C сыграли матч-турнир (каждый с каждым сыграл одинаковое число партий). Может ли случиться, что по числу очков A занял первое место, C – последнее, а по числу побед, наоборот, A занял последнее место, C – первое (за победу присуждается одно очко, за ничью – пол-очка)?

   Решение

Задачи

Страница: << 237 238 239 240 241 242 243 >> [Всего задач: 1308]      



Задача 67066

Темы:   [ Замощения костями домино и плитками ]
[ Арифметика остатков (прочее) ]
[ Теория игр (прочее) ]
Сложность: 3+
Классы: 7,8,9,10

Автор: Глебов А.

Прямоугольник 1×3 будем называть триминошкой. Петя и Вася независимо друг от друга разбивают доску 20×21 на триминошки. Затем они сравнивают полученные разбиения, и Петя платит Васе столько рублей, сколько триминошек в этих двух разбиениях совпали (оказались на одинаковых позициях). Какую наибольшую сумму выигрыша может гарантировать себе Вася независимо от действий Пети?

Прислать комментарий     Решение

Задача 88305

Темы:   [ Инварианты ]
[ Четность и нечетность ]
[ Теория алгоритмов (прочее) ]
Сложность: 3+
Классы: 7,8,9

На доске написаны числа
  а) 1, 2, 3, ..., 2003;
  б) 1, 2, 3, ..., 2005.
Разрешается стереть два любых числа и вместо них написать их разность. Можно ли добиться того, чтобы все числа стали нулями?

Прислать комментарий     Решение

Задача 98188

Темы:   [ Турниры и турнирные таблицы ]
[ Примеры и контрпримеры. Конструкции ]
[ Отношение порядка ]
Сложность: 3+
Классы: 6,7,8

Автор: Рубин А.

Три шахматиста A, B и C сыграли матч-турнир (каждый с каждым сыграл одинаковое число партий). Может ли случиться, что по числу очков A занял первое место, C – последнее, а по числу побед, наоборот, A занял последнее место, C – первое (за победу присуждается одно очко, за ничью – пол-очка)?

Прислать комментарий     Решение

Задача 102866

 [Убегающий ученик]
Темы:   [ Задачи на движение ]
[ Центральный угол. Длина дуги и длина окружности ]
[ Теория игр (прочее) ]
Сложность: 3+
Классы: 7,8

В центре круглого бассейна плавает ученик. Внезапно к бассейну подошёл учитель. Учитель не умеет плавать, но бегает в 4 раза быстрее, чем ученик плавает. Ученик бегает быстрее. Сможет ли он убежать?

Прислать комментарий     Решение

Задача 109494

Темы:   [ Десятичная система счисления ]
[ Признаки делимости на 3 и 9 ]
[ Ребусы ]
[ Перебор случаев ]
Сложность: 3+
Классы: 7,8,9

Номер нынешней олимпиады (70) образован последними цифрами года её проведения, записанными в обратном порядке.
Сколько еще раз повторится такая ситуация в этом тысячелетии?

Прислать комментарий     Решение

Страница: << 237 238 239 240 241 242 243 >> [Всего задач: 1308]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .