ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Автор: Герко А.А.

Назовём крокодилом шахматную фигуру, ход которой заключается в прыжке на m клеток по вертикали или по горизонтали, и потом на n клеток в перпендикулярном направлении. Докажите что для любых m и n можно так раскрасить бесконечную клетчатую доску в два цвета (для каждых конкретных m и n своя раскраска), что каждые две клетки, соединённые одним ходом крокодила, будут покрашены в разные цвета.

   Решение

Задачи

Страница: << 5 6 7 8 9 10 11 >> [Всего задач: 158]      



Задача 98404

Темы:   [ Раскраски ]
[ НОД и НОК. Взаимная простота ]
[ Шахматные доски и шахматные фигуры ]
Сложность: 4-
Классы: 8,9,10

Автор: Герко А.А.

Назовём крокодилом шахматную фигуру, ход которой заключается в прыжке на m клеток по вертикали или по горизонтали, и потом на n клеток в перпендикулярном направлении. Докажите что для любых m и n можно так раскрасить бесконечную клетчатую доску в два цвета (для каждых конкретных m и n своя раскраска), что каждые две клетки, соединённые одним ходом крокодила, будут покрашены в разные цвета.

Прислать комментарий     Решение

Задача 109490

Темы:   [ Раскраски ]
[ Четность и нечетность ]
[ Теория графов (прочее) ]
[ Пятиугольники ]
Сложность: 4-
Классы: 7,8,9,10

Можно ли покрасить 15 отрезков, изображённых на рисунке, в три цвета так, чтобы никакие два отрезка одного цвета не имели общего конца?

Прислать комментарий     Решение

Задача 109874

Темы:   [ Раскраски ]
[ Разбиения на пары и группы; биекции ]
[ Подсчет двумя способами ]
[ Правильные многоугольники ]
Сложность: 4-
Классы: 9,10,11

Все стороны и диагонали правильного 12-угольника раскрашиваются в 12 цветов (каждый отрезок – одним цветом).
Существует ли такая раскраска, что для любых трёх цветов найдутся три вершины, попарно соединенные между собой отрезками этих цветов?

Прислать комментарий     Решение

Задача 64191

Темы:   [ Раскраски ]
[ Принцип крайнего ]
[ Индукция (прочее) ]
Сложность: 4
Классы: 8,9

На острове все страны треугольной формы (границы прямые). Если две страны граничат, то по целой стороне. Докажите, что страны можно раскрасить в 3 цвета так, что соседние по стороне страны будут покрашены в разные цвета.
Прислать комментарий     Решение


Задача 66119

Темы:   [ Раскраски ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 4
Классы: 9,10,11

Петя раскрасил каждую клетку квадрата 1000×1000 в один из 10 цветов. Также он придумал такой 10-клеточный многоугольник Ф, что при любом способе положить его по границам клеток на раскрашенный квадрат, все 10 накрытых им клеток будут разного цвета. Обязательно ли Ф – прямоугольник?

Прислать комментарий     Решение

Страница: << 5 6 7 8 9 10 11 >> [Всего задач: 158]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .