ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Материалы по этой теме:
Подтемы:
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи а) На каждом из полей верхней и нижней горизонтали шахматной доски 8×8 стоит по фишке: внизу – белые, вверху – чёрные. За один ход разрешается передвинуть любую фишку на соседнюю свободную клетку по вертикали или горизонтали. За какое наименьшее число ходов можно добиться того, чтобы все чёрные фишки стояли внизу, а белые – вверху? б) Тот же вопрос для доски 7×7. Решение |
Страница: << 133 134 135 136 137 138 139 >> [Всего задач: 1110]
а) Докажите, что если в 3n клетках таблицы 2n×2n расставлены 3n звёздочек, то можно вычеркнуть n столбцов и n строк так, что все звёздочки будут вычеркнуты.
В прямоугольной таблице m строк и n столбцов (m < n). В некоторых клетках таблицы стоят звёздочки, так что в каждом столбце стоит хотя бы одна звёздочка. Докажите, что существует хотя бы одна такая звёздочка, что в одной строке с нею находится больше звёздочек, чем с нею в одном столбце.
Можно ли в таблицу 4×4 расставить такие натуральные числа, что одновременно выполняются следующие условия:
Дана таблица n×n, заполненная числами по следующему правилу: в клетке, стоящей в i-й строке и j-м столбце таблицы записано число В таблице зачеркнули n чисел таким образом, что никакие два зачёркнутых числа не находятся в одном столбце или в одной строке. Докажите, что сумма зачёркнутых чисел не меньше 1.
а) На каждом из полей верхней и нижней горизонтали шахматной доски 8×8 стоит по фишке: внизу – белые, вверху – чёрные. За один ход разрешается передвинуть любую фишку на соседнюю свободную клетку по вертикали или горизонтали. За какое наименьшее число ходов можно добиться того, чтобы все чёрные фишки стояли внизу, а белые – вверху? б) Тот же вопрос для доски 7×7.
Страница: << 133 134 135 136 137 138 139 >> [Всего задач: 1110] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|