ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи Рассмотрим последовательность, первые два члена которой равны 1 и 2 соответственно, а каждый следующий член – это наименьшее натуральное число, которое еще не встретилось в последовательности и которое не взаимно просто с предыдущим членом последовательности. Докажите, что каждое натуральное число входит в эту последовательность. Решение |
Страница: << 37 38 39 40 41 42 43 >> [Всего задач: 275]
Пусть K(x) равно числу таких несократимых дробей a/b, что a < x и b < x (a и b – натуральные числа). Например, K(5/2) = 3 (дроби 1, 2, ½).
В некотором царстве, в некотором государстве было выпущено неограниченное
количество монет достоинством в n1, n2, n3, ... копеек, где
а) Существуют ли такие натуральные числа a, b, c, что из двух чисел a/b + b/c + c/a и b/a + c/b + a/c ровно одно – целое? б) Докажите, что если они оба целые, то a = b = c.
Шайка разбойников отобрала у купца мешок монет. Каждая монета стоит целое число грошей. Оказалось, что какую бы монету ни отложить, оставшиеся монеты можно разделить между разбойниками так, чтобы каждый получил одинаковую сумму в грошах. Докажите, что если отложить одну монету, то число монет разделится на число разбойников.
Рассмотрим последовательность, первые два члена которой равны 1 и 2 соответственно, а каждый следующий член – это наименьшее натуральное число, которое еще не встретилось в последовательности и которое не взаимно просто с предыдущим членом последовательности. Докажите, что каждое натуральное число входит в эту последовательность.
Страница: << 37 38 39 40 41 42 43 >> [Всего задач: 275] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|