Страница:
<< 35 36 37 38
39 40 41 >> [Всего задач: 275]
|
|
Сложность: 4- Классы: 8,9,10
|
Четыре натуральных числа таковы, что квадрат суммы любых двух из них делится
на произведение двух оставшихся.
Докажите, что по крайней мере три из этих чисел равны между собой.
Можно ли числа 1, 2, ..., 10 расставить в ряд в некотором порядке так, чтобы каждое из них, начиная со второго, отличалось от предыдущего на целое число процентов?
|
|
Сложность: 4- Классы: 7,8,9
|
Для некоторых натуральных чисел a, b, c и d выполняются равенства a/c = b/d = ab+1/cd+1. Докажите, что a = c и b = d.
|
|
Сложность: 4- Классы: 10,11
|
Пусть a1, ..., a10 – различные натуральные числа, не меньшие 3, сумма которых равна 678. Может ли сумма остатков от деления некоторого натурального числа n на 20 чисел a1, a2, ..., a10, 2a1, 2a2,..., 2a10 равняться 2012?
|
|
Сложность: 4- Классы: 8,9,10
|
Найдите все такие натуральные k, что при каждом нечётном n > 100 число 20n + 13n делится на k.
Страница:
<< 35 36 37 38
39 40 41 >> [Всего задач: 275]