Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 10 задач
Версия для печати
Убрать все задачи

Угол при вершине A ромба ABCD равен 20°. Точки M и N – основания перпендикуляров, опущенных из вершины B на стороны AD и CD.
Найдите углы треугольника BMN.

Вниз   Решение


Точка D лежит на стороне AB треугольника ABC. Найдите CD, если известно, что BC = 37, AC = 15, AB = 44, AD = 14.

ВверхВниз   Решение


В окружности радиуса 1 проведено несколько хорд. Докажите, что если каждый диаметр пересекает не более k хорд, то сумма длин хорд меньше $ \pi$k.

ВверхВниз   Решение


Около четырёхугольника ABCD можно описать окружность. Кроме того, AB = 3, BC = 4, CD = 5 и AD = 2. Найдите AC.

ВверхВниз   Решение


Даны четыре окружности  S1, S2, S3 и S4, причем окружности Si и Si + 1 касаются внешним образом для i = 1, 2, 3, 4 (S5 = S1). Докажите, что радикальная ось окружностей S1 и S3 проходит через точку пересечения общих внешних касательных к S2 и S4.

ВверхВниз   Решение


В угол с вершиной A , равный 60o , вписана окружность с центром O . К этой окружности проведена касательная, пересекающая стороны угла в точках B и C . Отрезок BC пересекается с отрезком AO в точке M . Найдите радиус окружности, вписанной в треугольник ABC , если AM:MO = 2:3 и BC = 7 .

ВверхВниз   Решение


Найдите угол между радиусами OA и OB, если расстояние от центра O окружности до хорды AB:  а) вдвое меньше AB;  б) вдвое меньше OA.

ВверхВниз   Решение


В графе 20 вершин, степень каждой не меньше 10. Доказать, что в нём есть гамильтонов путь.

ВверхВниз   Решение


В неравнобедренном треугольнике ABC биссектрисы углов A и B обратно пропорциональны противолежащим сторонам. Найдите угол C.

ВверхВниз   Решение


Восемь детей разделили между собой 32 персика следующим образом. Аня получила 1 персик, Катя – 2, Лиза – 3 и Даша – 4. Коля Иванов взял столько же персиков, сколько и его сестра, Пете Гришину досталось вдвое больше персиков, чем его сестре, Толе Андрееву – втрое больше, чем его сестре, и, наконец, Вася Сергеев получил персиков вчетверо больше, чем его сестра. Назовите фамилии четырёх девочек.

Вверх   Решение

Задачи

Страница: << 14 15 16 17 18 19 20 >> [Всего задач: 367]      



Задача 98345

Темы:   [ Уравнения в целых числах ]
[ Разрезания на части, обладающие специальными свойствами ]
[ Куб ]
[ Разложение на множители ]
[ Объем тела равен сумме объемов его частей ]
[ Арифметика остатков (прочее) ]
Сложность: 3
Классы: 7,8,9,10

Куб разрезали на 99 кубиков, из которых ровно у одного ребро имеет длину, отличную от 1 (у каждого из остальных ребро равно 1).
Найдите объём исходного куба.

Прислать комментарий     Решение

Задача 98369

Темы:   [ Уравнения в целых числах ]
[ Разложение на множители ]
Сложность: 3
Классы: 7,8,9

Докажите, что уравнение  xy(x – y) + yz(y – z) + zx(z – x) = 6  имеет бесконечно много решений в целых числах.

Прислать комментарий     Решение

Задача 98638

Темы:   [ Уравнения в целых числах ]
[ Математическая логика (прочее) ]
Сложность: 3
Классы: 6,7,8

Восемь детей разделили между собой 32 персика следующим образом. Аня получила 1 персик, Катя – 2, Лиза – 3 и Даша – 4. Коля Иванов взял столько же персиков, сколько и его сестра, Пете Гришину досталось вдвое больше персиков, чем его сестре, Толе Андрееву – втрое больше, чем его сестре, и, наконец, Вася Сергеев получил персиков вчетверо больше, чем его сестра. Назовите фамилии четырёх девочек.

Прислать комментарий     Решение

Задача 102812

Темы:   [ Уравнения в целых числах ]
[ Простые числа и их свойства ]
Сложность: 3
Классы: 7,8

Найти все такие тройки простых чисел x, y, z, что  19x − yz = 1995.

Прислать комментарий     Решение

Задача 102855

Темы:   [ Уравнения в целых числах ]
[ Признаки делимости на 2 и 4 ]
Сложность: 3
Классы: 7,8,9

Решите уравнение в целых числах  m² − n² = 2002.

Прислать комментарий     Решение

Страница: << 14 15 16 17 18 19 20 >> [Всего задач: 367]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .