ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам | Поиск |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 5 6 7 8 9 10 11 >> [Всего задач: 52]      



Задача 109203

Темы:   [ Касательные к сферам ]
[ Достроение тетраэдра до параллелепипеда ]
Сложность: 4
Классы: 10,11

Две сферы радиуса R касаются друг друга. Через точку M проведены две прямые, касающиеся данных сфер. Первая прямая касается сфер в точках A и B , вторая – в точках C и D , точки A и C лежат на одной сфере. Известно, что BMD = 60o , AB=3CD и MB>MA . Найдите CD .
Прислать комментарий     Решение


Задача 109262

Темы:   [ Ортоцентрический тетраэдр ]
[ Достроение тетраэдра до параллелепипеда ]
[ Сфера, касающаяся ребер тетраэдра ]
Сложность: 4
Классы: 10,11

Все рёбра треугольной пирамиды ABCD касаются некоторого шара. Три отрезка, соединяющие середины скрещивающихся рёбер AB и CD , AC и BD , AD и BC , равны. Угол DBC равен 50o , а угол BCD больше угла BDC . Найдите отношение площадей граней ABD и ABC .
Прислать комментарий     Решение


Задача 110739

Темы:   [ Ортоцентрический тетраэдр ]
[ Достроение тетраэдра до параллелепипеда ]
[ Объем помогает решить задачу ]
Сложность: 4
Классы: 10,11

Докажите, что высоты тетраэдра пересекаются в одной точке (ортоцентрический тетраэдр)}тогда и только тогда, когда равны произведения косинусов противоположных двугранных углов тетраэдра.
Прислать комментарий     Решение


Задача 111115

Темы:   [ Ортоцентрический тетраэдр ]
[ Достроение тетраэдра до параллелепипеда ]
Сложность: 4
Классы: 10,11

Докажите, что в ортоцентрическом тетраэдре выполняется соотношение OH2=4R2-3l2 , где H – ортоцентр тетраэдра, R – радиус описанной сферы, l – расстояние между серединами противоположных рёбер.
Прислать комментарий     Решение


Задача 110485

 [Равногранный тетраэдр]
Темы:   [ Равногранный тетраэдр ]
[ Достроение тетраэдра до параллелепипеда ]
[ Развертка помогает решить задачу ]
[ Проектирование помогает решить задачу ]
[ Медиана пирамиды (тетраэдра) ]
[ Вспомогательная площадь. Площадь помогает решить задачу ]
Сложность: 6+
Классы: 10,11

Докажите, что следующие свойства тетраэдра равносильны:

1) все грани равновелики;

2) каждое ребро равно противоположному;

3) все грани равны;

4) центры описанной и вписанной сфер совпадают;

5) суммы углов при каждой вершине равны;

6) сумма плоских углов при каждой вершине равна 180o ;

7) развёртка тетраэдра представляет собой остроугольный треугольник, в котором проведены средние линии;

8) все грани – остроугольные треугольники с одинаковым радиусом описанной окружности;

9) ортогональная проекция тетраэдра на каждую из трёх плоскостей, параллельных двум противоположным рёбрам, – прямоугольник;

10) параллелепипед, полученный в результате проведения через противоположные рёбра трёх пар параллельных плоскостей, – прямоугольный;

11) высоты тетраэдра равны;

12) точка пересечения медиан совпадает с центром описанной сферы;

13) точка пересечения медиан совпадает с центром вписанной сферы;

14) сумма плоских углов при трёх вершинах равна 180o ;

15) сумма плоских углов при двух вершинах равна 180o и два противоположных ребра равны.
Прислать комментарий     Решение


Страница: << 5 6 7 8 9 10 11 >> [Всего задач: 52]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .