Страница:
<< 15 16 17 18
19 20 21 >> [Всего задач: 965]
|
|
Сложность: 3 Классы: 8,9,10,11
|
Про квадратный трехчлен f(x) = ax² – ax + 1 известно, что | f(x)| ≤ 1 при 0 ≤ x ≤ 1. Найдите наибольшее возможное значение а.
|
|
Сложность: 3 Классы: 8,9,10,11
|
При каком натуральном K величина достигает максимального значения?
a, b и c – целые числа. Докажите, что если a = b + c, то a4 + b4 + c4 есть удвоенный квадрат целого числа.
|
|
Сложность: 3 Классы: 7,8,9
|
В лес за грибами пошли 11 девочек и n мальчиков. Вместе они собрали n² + 9n – 2 гриба, причём все они собрали поровну грибов.
Кого было больше: мальчиков или девочек?
|
|
Сложность: 3 Классы: 7,8,9
|
Пусть a, b, c, d – такие вещественные числа, что
a³ + b³ + c³ + d³ = a + b + c + d = 0.
Докажите, что сумма каких-то двух из этих чисел равна нулю.
Страница:
<< 15 16 17 18
19 20 21 >> [Всего задач: 965]