ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 15 16 17 18 19 20 21 >> [Всего задач: 965]      



Задача 86520

Темы:   [ Исследование квадратного трехчлена ]
[ Методы решения задач с параметром ]
Сложность: 3
Классы: 8,9,10,11

Про квадратный трехчлен  f(x) = ax² – ax + 1  известно, что  | f(x)| ≤ 1  при  0 ≤ x ≤ 1.  Найдите наибольшее возможное значение а.

Прислать комментарий     Решение

Задача 97900

Темы:   [ Квадратные неравенства и системы неравенств ]
[ Ограниченность, монотонность ]
Сложность: 3
Классы: 8,9,10,11

Автор: Фольклор

При каком натуральном K величина     достигает максимального значения?

Прислать комментарий     Решение

Задача 97964

Темы:   [ Тождественные преобразования ]
[ Выделение полного квадрата. Суммы квадратов ]
Сложность: 3
Классы: 7,8

Автор: Фольклор

a, b и c – целые числа. Докажите, что если  a = b + c,  то  a4 + b4 + c4  есть удвоенный квадрат целого числа.

Прислать комментарий     Решение

Задача 98113

Темы:   [ Деление многочленов с остатком. НОД и НОК многочленов ]
[ Задачи с неравенствами. Разбор случаев ]
Сложность: 3
Классы: 7,8,9

В лес за грибами пошли 11 девочек и n мальчиков. Вместе они собрали  n² + 9n – 2  гриба, причём все они собрали поровну грибов.
Кого было больше: мальчиков или девочек?

Прислать комментарий     Решение

Задача 98240

Тема:   [ Разложение на множители ]
Сложность: 3
Классы: 7,8,9

Пусть a, b, c, d – такие вещественные числа, что  a³ + b³ + c³ + d³ = a + b + c + d = 0.
Докажите, что сумма каких-то двух из этих чисел равна нулю.

Прислать комментарий     Решение

Страница: << 15 16 17 18 19 20 21 >> [Всего задач: 965]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .