|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
Версия для печати
Убрать все задачи В семейном альбоме есть десять фотографий. На каждой из них изображены три человека: в центре стоит мужчина, слева от мужчины – его сын, а справа – его брат. Какое наименьшее количество различных людей может быть изображено на этих фотографиях, если известно, что все десять мужчин, стоящих в центре, различны? Пусть O — точка пересечения диагоналей четырехугольника ABCD, а E, F — точки пересечения продолжений сторон AB и CD, BC и AD соответственно. Прямая EO пересекает стороны AD и BC в точках K и L, а прямая FO пересекает стороны AB и CD в точках M и N. Докажите, что точка X пересечения прямых KN и LM лежит на прямой EF. |
Страница: << 1 2 3 4 5 6 >> [Всего задач: 28]
Найдите все значения параметра a, при которых корни x1, x2, x3 многочлена x3 – 6x2 + ax + a удовлетворяют
равенству
Постройте многочлен, корни которого равны квадратам корней многочлена x3 + x2 – 2x – 1.
Известно, что x1, x2, x3 – корни уравнения x3 – 2x2 + x + 1 = 0.
Известно, что целые числа a, b, c удовлетворяют равенству a + b + c = 0. Докажите, что 2a4 + 2b4 + 2c4 – квадрат целого числа.
Определение. Пусть α = (k, j, i) – набор целых неотрицательных чисел, k ≥ j ≥ i. Через Tα(x, y, z) будем обозначать симметрический многочлен от трёх переменных, который есть по определению сумма одночленов вида xaybzc по всем шести перестановкам (a, b, c) набора (k, j, i).
Страница: << 1 2 3 4 5 6 >> [Всего задач: 28] |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|