Processing math: 100%
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 6 задач
Версия для печати
Убрать все задачи

Пусть a, b, m, n – натуральные числа, причём числа a и b взаимно просты и  a > 1.
Докажите, что если  am + bm  делится на  an + bn,  то m делится на n.

Вниз   Решение


а) Докажите, что существует единственное аффинное преобразование, которое переводит данную точку O в данную точку O', а данный базис векторов  e1, e2 — в данный базис  e1', e2'.
б) Даны два треугольника ABC и A1B1C1. Докажите, что существует единственное аффинное преобразование, переводящее точку A в A1, B — в B1, C — в C1.
в) Даны два параллелограмма. Докажите, что существует единственное аффинное преобразование, которое один из них переводит в другой.

ВверхВниз   Решение


Пусть OABCDEF – шестигранная пирамида с основанием ABCDEF, описанная около сферы ω. Плоскость, проходящая через точки касания ω с гранями OFA, OAB и ABCDEF, пересекает ребро OA в точке A1; аналогично определяются точки B1, C1, D1, E1 и F1. Пусть , m и n – прямые A1D1, B1E1 и C1F1 соответственно. Оказалось, что и m лежат в одной плоскости, m и n также лежат в одной плоскости. Докажите, что и n лежат в одной плоскости.

ВверхВниз   Решение


Вершина A остроугольного треугольника ABC соединена отрезком с центром O описанной окружности. Из вершины A проведена высота AH. Докажите, что  $ \angle$BAH = $ \angle$OAC.

ВверхВниз   Решение


Дано число 1·2·3·4·5·...·56·57.
  а) Какая последняя цифра этого числа?
  б) Каковы десять последних цифр этого числа?

ВверхВниз   Решение


Петя написал на доске верное равенство: 35+10-41=42+12-50, а   затем вычел из обеих частей по 4:  35+10-45=42+12-54. Он заметил, что в левой части равенства все числа делятся на 5, а в правой - на 6.  Тогда он вынес в левой части 5 за скобки, а в правой - 6 и получил 5(7+2-9)=6(7+2-9). Сократив обе части на общий множитель, Петя получил, что 5=6. Где он ошибся?

Вверх   Решение

Задачи

Страница: << 1 2 3 4 5 >> [Всего задач: 25]      



Задача 73712

Темы:   [ Иррациональные уравнения ]
[ Замена переменных (прочее) ]
[ Симметрические системы. Инволютивные преобразования ]
[ Симметрия и инволютивные преобразования ]
[ Методы решения задач с параметром ]
Сложность: 4+
Классы: 10,11

Автор: Темиров Т.

Пусть a – заданное вещественное число, n – натуральное число,  n > 1.
Найдите все такие x, что сумма корней n-й степени из чисел  xn – an  и  2an – xn  равна числу a.

Прислать комментарий     Решение

Задача 109565

Темы:   [ Иррациональные уравнения ]
[ Монотонность и ограниченность ]
[ Монотонность, ограниченность ]
Сложность: 4+
Классы: 9,10,11

Докажите, что если (x+)(y+)=1 , то x+y=0 .
Прислать комментарий     Решение


Задача 108984

Темы:   [ Иррациональные уравнения ]
[ Выделение полного квадрата. Суммы квадратов ]
[ Замена переменных (прочее) ]
Сложность: 4+
Классы: 9,10

Найти все действительные решения уравнения

36/+4/=28-4-.

Прислать комментарий     Решение

Задача 77887

Тема:   [ Иррациональные уравнения ]
Сложность: 5-
Классы: 10,11

Найти действительные корни уравнения:

x2 + 2ax + $\displaystyle {\textstyle\frac{1}{16}}$ = - a + $\displaystyle \sqrt{a^2+x-\frac{1}{16}}$    $\displaystyle \left(\vphantom{0<a<\frac{1}{4}}\right.$0 < a < $\displaystyle {\textstyle\frac{1}{4}}$$\displaystyle \left.\vphantom{0<a<\frac{1}{4}}\right)$.

Прислать комментарий     Решение

Задача 79477

Темы:   [ Разложение на множители ]
[ Иррациональные уравнения ]
Сложность: 3+
Классы: 8,9,10

Найти все значения x, y и z, удовлетворяющие равенству xy+z=xy+z.

Прислать комментарий     Решение

Страница: << 1 2 3 4 5 >> [Всего задач: 25]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .